Before we get started...

## What compressed air energysaving projects are you planning?

Answer in chat or raise hand and unmute



MARCH 19, 2024

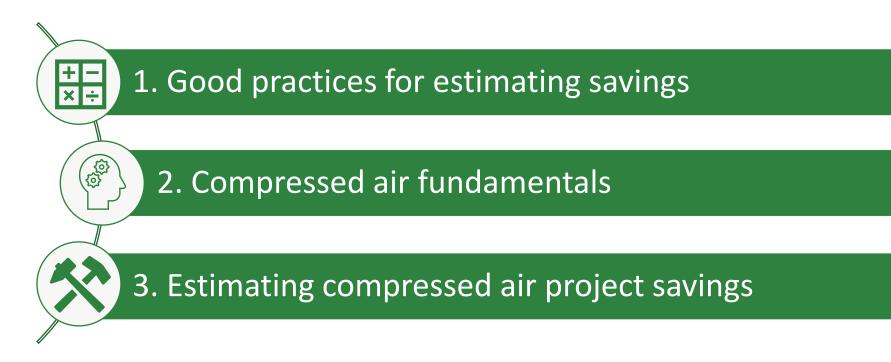
## Save on Energy webinar: Estimating project savings – compressed air

Nick Dalziel P. Eng., CMVP, CEM, Energy Coach

**Ron Marshall** Marshall Compressed Air Consulting



# Download or print your participant workbook!


## Download from:

Chat window

#### SAVE DELIVERY ESTIMATING COMPRESSED AIR PROJECT SAVINGS PARTICIPANT HANDOUT How do you know if an energy-saving opportunity is worth pursuing? After identifying an opportunity, you'll likely want to estimate the savings to evaluate if it's worth putting more effort and resources into Understanding how to develop a reasonable estimate of energy savings with limited information can be very useful, but it's important to understand what tools or calculations to use, what assumptions are going into those estimates, and under what conditions they're valid. IN THIS WORKSHOP, PARTICIPANTS WILL: ▶ Learn how to estimate energy savings from compressed air projects. > Understand when to apply different estimation approaches depending on applicability and available data. Have questions about estimating savings answered by, compressed air expert. Ron Marshall. This workshop will be hosted over Teams.



Pathway to estimating project savings





## Good practices for estimating savings

- 1. Consider how accurate your estimate need to be
- 2. Assess your data availability
- 3. Get a good baseline
- 4. Understand the mechanism of savings
- 5. Understand the calculation method, tools, rules of thumb, and their respective limitations



## Appropriate accuracy



- What decision are you trying to make?
- What are the risks associated with the decision?

## **Decision / Risk Examples**

- Capital spend / Underperformance
- Proceed with further study / Non-viable
- Trial a setpoint change / Reverse decision





## You need to start with an accurate baseline

Example: "25% energy savings" on a 100 hp compressor



#### No baseline measurements

 $25\% \times 100$ hp x 0.746 kW/hp x 8760hrs = 163 MWh/year of savings

## With baseline measurements

 $25\% \ x \ 100hp \ x \ 0.746 \ x \ 0.85_{(load \ factor)} \ x \\ 0.80_{(duty \ cycle)} \ x \ 8760 = 111 \ MWh/year$ 



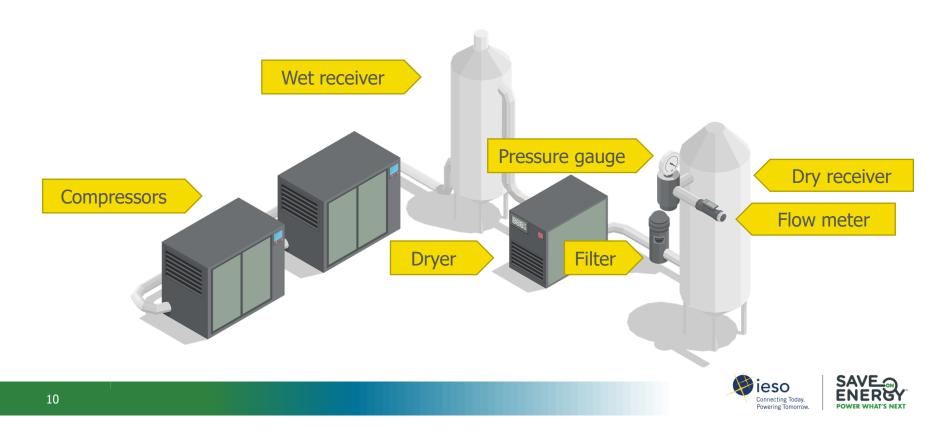


## Compressed air – mechanisms of savings

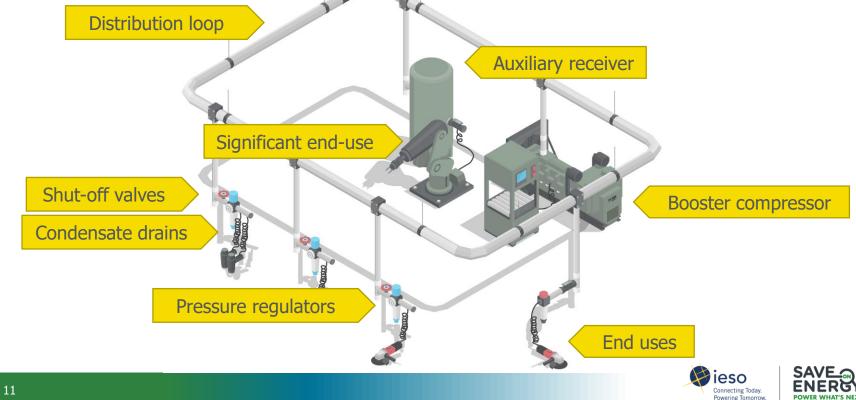




# Introducing: Ron Marshall


- Consultant MCAC
- 38 years with Power Utility
- 29 years Technical CA Support
- CAC Level 2 Instructor
- International Trainer UNIDO
- 600+ projects completed








## Understanding your compressed air system - supply



# Understanding your compressed air system - demand



## Types of compressors

Rotary screw compressor



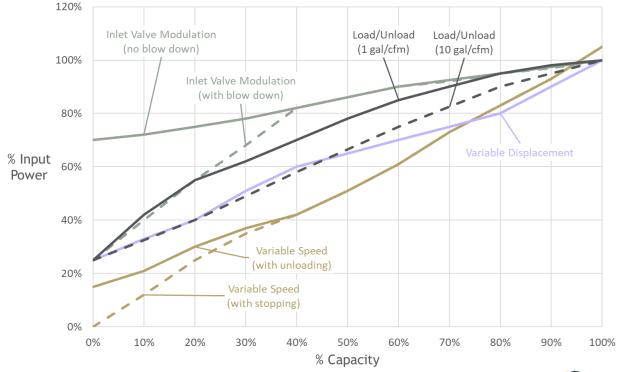
Reciprocating compressor



#### Axial compressor



#### Rotary vane compressor




## Centrifugal compressor





## How are your compressors controlled?





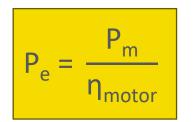


13

# Establishing compressed air baselines



Estimating power and energy consumption


If you've got nothing but the motor nameplate...

$$P_{m} = hp_{nameplate} \times 0.746 [kW/hp] \times LF$$

Where:

 $Hp_{nameplate}$  is the nameplate horsepower  $P_m$  is motor power

LF (Load Factor) is between 0% - 100%

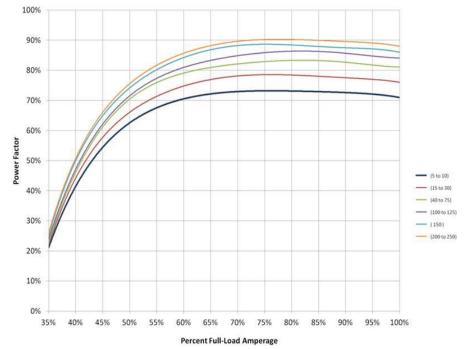


Where:

- $P_e$  is electrical power
- $P_m$  is motor power
- $\eta_{motor}$  is motor efficiency



15


# Estimating power from amps

$$P_{e} = \frac{V \times I \times PF \times \sqrt{3}}{1000}$$

Where:

 $P_e$  = Three-phase electric power [kW] V = RMS voltage, mean line-to-line of 3 phases [V]

I = RMS current, mean of 3 phases [A] PF = Power factor as a decimal



Power Factor: for typical power factor v. motor load by motor sizing, see Figure 4.5 (page 63) of the US Department of Energy's (DOE) <u>Premium Efficiency Motor Selection And Application Guide</u>





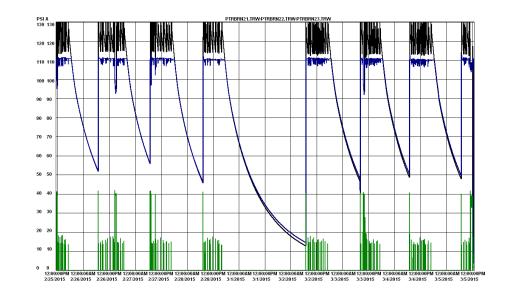
## Calculating baseline power – power factor issues







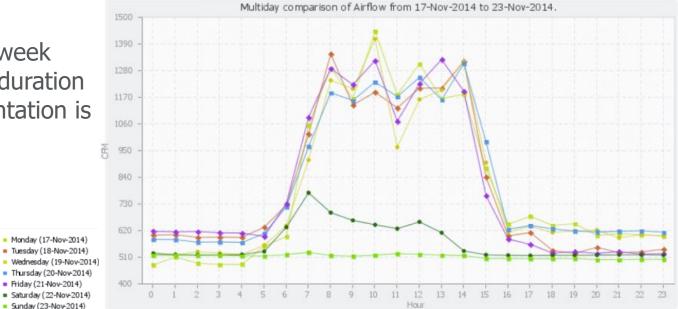
# Calculating baselines – using CAGI data sheets


- CAGI Compressed Air and Gas Institute
- Useful for estimating flow from power, or vice versa
- Widely available for newer compressors
- Must be corrected for pressure
- Particularly useful for variable speed drives (VSDs)

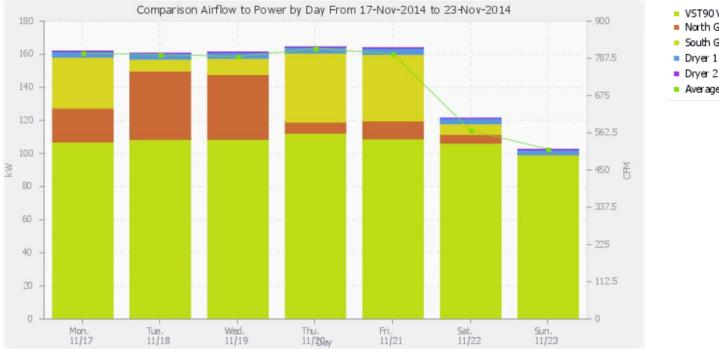
| 2  | X Air-cooled Water-                       | cooled               | Type:                                    | Screw                                        |  |
|----|-------------------------------------------|----------------------|------------------------------------------|----------------------------------------------|--|
|    |                                           |                      | # of Stages:                             | 1                                            |  |
| 3  | Full Load Operating Pressure <sup>b</sup> |                      | 138                                      | psig <sup>b</sup>                            |  |
| 4  | Drive Motor Nominal Rating                |                      | 100                                      | hp                                           |  |
| 5  | Drive Motor Nominal Efficiency            |                      | 96                                       | percent                                      |  |
| 6  | Fan Motor Nominal Rating (if appl         | icable)              | 2.6                                      | hp                                           |  |
| 7  | Fan Motor Nominal Efficiency              |                      | 79                                       | percent                                      |  |
|    | Input Power (kW)                          |                      | Capacity (acfm) <sup>a,d</sup>           | Specific Power (kW/100 acfm) <sup>d</sup>    |  |
|    | 94.5                                      | Max                  | 498.6                                    | 19.0                                         |  |
| 8* | 79.1                                      |                      | 419.2                                    | 18.9                                         |  |
| 8* | 59.9                                      |                      | 316.5                                    | 18.9<br>19.4<br>20.6                         |  |
|    | 43.6                                      |                      | 225.0                                    |                                              |  |
|    | 30.9                                      |                      | 150.2                                    |                                              |  |
|    | 26.6                                      | Min                  | 123.9                                    | 21.5                                         |  |
| 9* | Total Package Input Power at Zero         | Flow <sup>c, d</sup> | 1.1                                      | kW                                           |  |
| 10 | Isentropic Effeciency                     |                      | 82.95                                    | %                                            |  |
|    | 25.0<br>(R427 V BULAR)<br>20.0            | ~                    |                                          |                                              |  |
| 11 | 15.0                                      | ) 100.0 125.0 150    | 10 175.0 200.0 225.0 250.0 275.0 300.0 2 | 2250 3300 3750 4000 4250 4500 4750 5000 5250 |  |

Connecting Today. Powering Tomorrow.

# Operating hours considerations


- Seasonal duty
- Statutory holidays
- Plant shutdowns
- Non-production modes common for one or more compressors to run, but often mostly to feed leaks.






## **Good practices**

- Minimum one week
  measurement duration
- Visual representation is
  important














## Use annual operating hours and day types to calculate baseline

ASME EA-4G-2010

| Day Type      | Total Operating<br>Hours | Average<br>Airflow,<br>acfm | Average<br>Airflow,<br>%Cs. | Peak Demand,<br>kW | Load Factor,<br>% | Annual Energy,<br>kWh | Annual Energy<br>Cost,<br>\$ / yr |
|---------------|--------------------------|-----------------------------|-----------------------------|--------------------|-------------------|-----------------------|-----------------------------------|
| Production    | 6,000                    | 538                         | 40.9                        | 182.5              | 58.9              | 769,950               | \$30,798.00                       |
| Weekends      | 400                      | 630                         | 47.9                        | 103.6              | 47.5              | 41,440                | \$1,637.00                        |
| System totals | 6,400                    | 544                         | 41.4                        | 182.5              | 58.2              | 811,390               | \$32,435.00                       |

Table 3 Example Baseline Summary



## Determining the baseline - data presentation

| % of Max. CFM | Hours | Average CFM | Avg. kW | Specific Power | Daily kWh | Daily Cost | Annual kWh | Annual Cost |
|---------------|-------|-------------|---------|----------------|-----------|------------|------------|-------------|
| 70            | 0.5   | 2,933.21    | 517.57  | 17.65          | 258.78    | \$13.97    | 64,696     | \$3,494     |
| 65            | 4.3   | 2,758.94    | 504.48  | 18.29          | 2,169.27  | \$117.14   | 542,317    | \$29,285    |
| 60            | 5.3   | 2,575.89    | 483.12  | 18.76          | 2,560.56  | \$138.27   | 640,139    | \$34,568    |
| 55            | 2.8   | 2,364.70    | 442.53  | 18.71          | 1,239.08  | \$66.91    | 309,770    | \$16,728    |
| 50            | 1.2   | 2,148.06    | 408.43  | 19.01          | 490.11    | \$26.47    | 122,528    | \$6,616     |
| 45            | 0.8   | 1,934.59    | 365.31  | 18.88          | 292.25    | \$15.78    | 73,062     | \$3,945     |
| 40            | 1.2   | 1,675.02    | 293.00  | 17.49          | 351.60    | \$18.99    | 87,900     | \$4,747     |
| 35            | 3.9   | 1,492.41    | 264.92  | 17.75          | 1,033.20  | \$55.79    | 258,300    | \$13,948    |
| 30            | 2.1   | 1,291.85    | 225.77  | 17.48          | 474.12    | \$25.60    | 118,530    | \$6,401     |
| 25            | 1.8   | 1,080.28    | 209.36  | 19.38          | 376.86    | \$20.35    | 94,214     | \$5,088     |
| 15            | 0.1   | 603.93      | 68.70   | 11.38          | 6.87      | \$0.37     | 1,718      | \$93        |
| 5             | 0.1   | 79.21       | 18.50   | 23.35          | 1.85      | \$0.10     | 463        | \$25        |
| Totals        | 24    | 2,094.43    | 385.45  | 18.40          | 9,254.54  | \$499.74   | 2,313,635  | \$124,936   |

Daily average CFM consumption midweek (Mon-Fri)

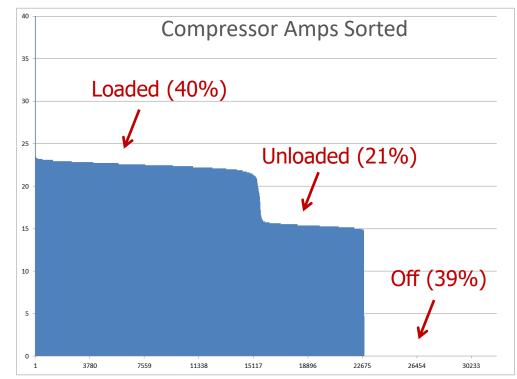
Daily average CFM consumption on weekend (Sat-Sun)

| % of Max. CFM | Hours | Average CFM | Avg. kW | Specific Power | Daily kWh | Daily Cost | Annual kWh | Annual Cost |
|---------------|-------|-------------|---------|----------------|-----------|------------|------------|-------------|
| 50            | 0.1   | 2,038.10    | 354.03  | 17.37          | 35.40     | \$1.91     | 3,540      | \$191       |
| 40            | 0.1   | 1,815.88    | 332.70  | 18.32          | 33.27     | \$1.80     | 3,327      | \$180       |
| 35            | 0.1   | 1,428.92    | 319.50  | 22.36          | 31.95     | \$1.73     | 3,195      | \$173       |
| 30            | 3.7   | 1,221.59    | 198.39  | 16.24          | 734.03    | \$39.64    | 73,403     | \$3,964     |
| 25            | 19.9  | 1,094.60    | 187.48  | 17.13          | 3,730.85  | \$201.47   | 373,085    | \$20,147    |
| 10            | 0.1   | 496.60      | 118.05  | 23.77          | 11.81     | \$0.64     | 1,181      | \$64        |
| Totals        | 24    | 1,120.16    | 190.74  | 17.03          | 4,577.31  | \$247.19   | 457,731    | \$24,717    |

Annual carbon cost for weekend period: 380 tons of CO2.



## Determining the baseline – alternative methods

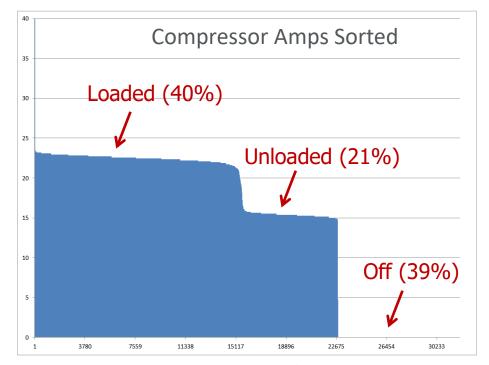

Calculating flow from compressor status

|  | Pressure Band Used<br>Running Hours<br>Loaded Hours<br>Hainscreen Help | Press. Band 1 †<br>8462 hrs<br>2660 hrs 4<br>Extra |
|--|------------------------------------------------------------------------|----------------------------------------------------|
|--|------------------------------------------------------------------------|----------------------------------------------------|



## Estimating flow from compressor status

- Take hour readings from compressor logs at start and end of measurement period
- Some compressor controllers track average flow, amps, and/or kW (typically VSDs)






# Estimating flow from compressor status

- Rated flow 100 cfm
- To find avg flow in period 40% x 100 = 40 cfm
- To find avg flow while system active

System active 61% 40/61 = 66% 66% x 100 = 66 cfm





# Estimating flow from compressor status

- Load duration plots
- Calculate flow in each segment
- Use rated flows from CAGI
- Use characteristic curves



- C1: Sullair TS20-200L Avg. kW
- C4: Sullair TS32-200L Avg. kW



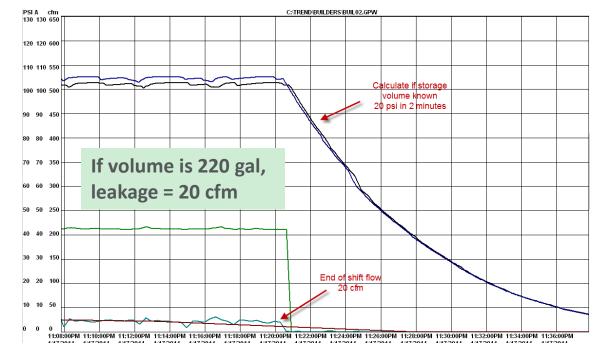
# Estimating power from compressor status

- Load duration plots
- Calculate flow and power in each segment
- Use rated flows from CAGI and measured or calculated power
- Use characteristic curves or test
  - Modulation
  - Capacity control
  - Load Unload
  - VSD

|        | 8760   |       |       |      |       |      |       |        |        |
|--------|--------|-------|-------|------|-------|------|-------|--------|--------|
| Comp 3 | Duty   | Ave.  | Rated | pf   | Rated | %    | Rated | System | System |
|        | %      | Amps  | Amps  |      | kW    | Сар  | cfm   | kW     | cfm    |
| System | 100.0% |       |       |      |       |      |       |        |        |
| 1      | 18.6%  | 107.0 | 111.0 | 0.8  | 88.8  | 100% | 440   | 15.9   | 81.9   |
| 2      | 13.7%  | 86.8  | 103.0 | 0.8  | 82.4  | 100% | 440   | 9.4    | 29.9   |
| 3      | 0.6%   | 64.6  | 74.0  | 0.78 | 57.7  | 10%  | 44    | 0.3    | 0.2    |
| 4      | 1.3%   | 49.4  | 51.0  | 0.65 | 33.2  | 0%   | 0     | 0.4    | 0.0    |
| 5      | 65.8%  | 0.2   | 47.0  | 0.65 | 30.6  | 0%   | 0     |        |        |
|        |        |       |       |      |       |      |       | 26.0   | 112.   |



# Estimating your leak flow baseline


Leak testing methods:

- Flow meter
- Compressor cycles
- Pressure drawdown

Leakage (cfm free air) =  $\left[\frac{V \times (P_1 - P_2)}{T \times P_2}\right]$ 

V = cf (7.48 gal/cf)T = minutes

Pa = ambient psi





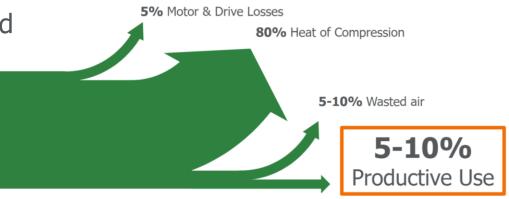
## Leak flow example calculation

## Determine leak flow rate by a cycle timing test

Conditions: 500 cfm system running in load/unload mode Measure load and unload cycle times when there is no production Measured times: Load = 1 Minutes, Unload = 7 Minutes Calculate the duty cycle: 1/(1+7) = 0.125

Leak Rate = 500 \* 0.125 = 62.5 cfm

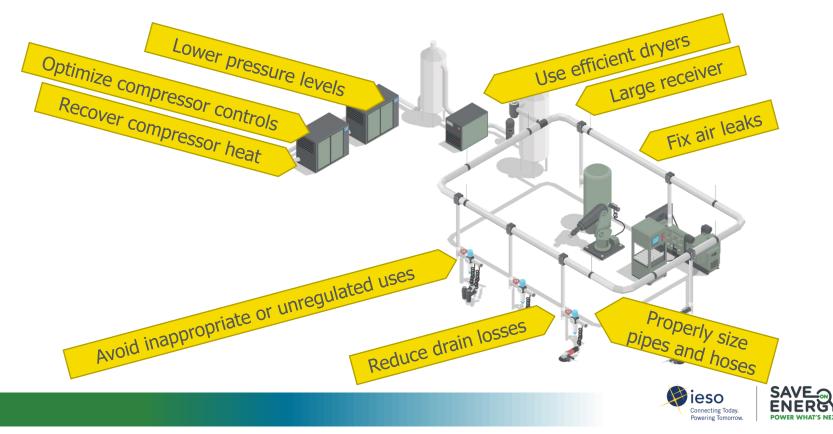



# **Compressed Air Project Savings**



# Compressed air project savings

Optimization occurs when:


- Efficiency of compressed air production is improved
- Less compressed air is produced
- Heat of compression is used





## The compressed air system - where do you start?

34



# Consider the demand side and supply side

## **Reduce Air Demand**

- Consumption by end uses
- Leakage, artificial demand, and inappropriate uses

#### **Reduce Pressure**

- Eliminate avoidable pressure losses
- Connections, fittings, filters, etc.

## **Improve Efficiency of Supply**

- Produce compressed air more efficiently
- Improve control strategy





SSeSS

 $\triangleleft$ 

# Estimating savings – leak repair

**Mechanism of Savings:** Reduce air flow demand > control signal > reduces air production > compressor control mechanism > reduces input power

## **Calculation Methods**

Methods for estimating air flow reduction:

Db measurement (inaccurate),

Flow measurement during non-production,

Pressure drawdown, or cycle timing test for load/unload system

Determine specific power (kw/100 cfm)

**Pitfalls:** Poorly controlled systems don't react precisely to flow reductions



## Leak repair example

Modulating compressor system at an average of 2,000 cfm and 450kW

Estimated leak rate: 250 cfm, per cycle timing test Assume you fix 80% of leaks  $\rightarrow$  200 cfm Typical compressor loading between 85-100% Per characteristic curve,

- 10% flow reduction = 3.33% power reduction
- 0.0333 \* 450 kW = 15 kW
- System specific efficiency = 22.5 kW/100cfm
- Effective impact of leak repair = 7.5 kW/100 cfm

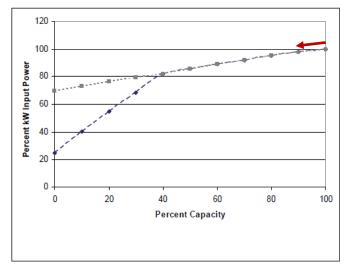
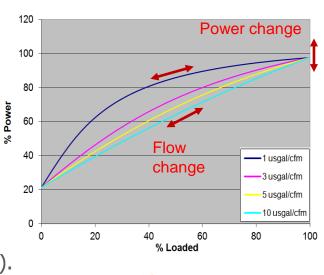



Figure 8 - Rotary Screw Compressor with Inlet Modulation Control (Courtesy Compressed Air Challenge)



## Estimating savings – discharge pressure reduction

**Mechanism of Savings:** Reduce compressor discharge pressure > reduces the work to produce the same volume of air > reduces input power


**Calculation Method:** Approximately 1% input power reduction for every 2-psi pressure reduction, for systems operating between ~80 – 120 psi

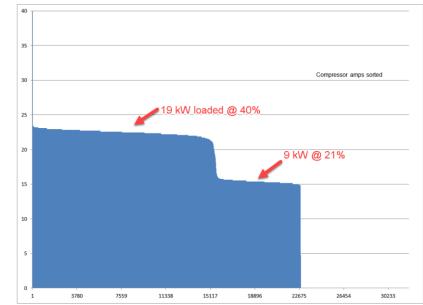
#### **Pitfalls:**

Ensure plant can run at lower pressure.

Reduces loaded kW only.

**Windfalls:** Reducing plant pressure results in air flow reductions with unregulated air users (~1% of kW per psi).




% Power vs % Loaded



## Pressure reduction example

### 100 psi load/unload system

- 15 psi pressure reduction
- Unloaded kW unchanged
- 1% reduction for every 2 psi when loaded
- 19 kW x .075 = 1.43 kW
- Avg reduced 1.43 kW x 0.4 = 0.57 kW
- Flow reduction ignored in this case
- Unregulated demand reduces with pressure reduction





# Estimating savings – more efficient compressor

Mechanism of Savings: Efficiency of air production is improved

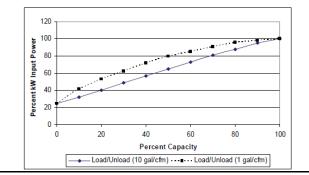
#### **Calculation Method:**

- Starting with the baseline flow, determine the % capacity (cfm) for the new compressor, at the average operating flow (simple) or for the full flow range (detailed)
- Use CAGI sheet, generic or model-specific Capacity vs. Power charts to plot the % capacity and interpolate the % power.
- Multiply the % power by the (pressure adjusted) full-load input power
- Subtract the new power estimate from baseline power to get kW savings

#### **Pitfalls:**

- Adjust for discharge pressure
- Factor for the slope/intercept of the characteristic curve not the full-load kW/100 cfm
- Some control methods (Load/unload) not linear




## More efficient compressor example

#### **Baseline: 100 HP modulating compressor**

- Average flow = 200 cfm; Peak flow = 400 cfm
- Average power = 80 kW; or 40 kW/100 cfm
- Discharge pressure = 110 psi

#### New 100 HP load/unload compressor with 2,000 gals

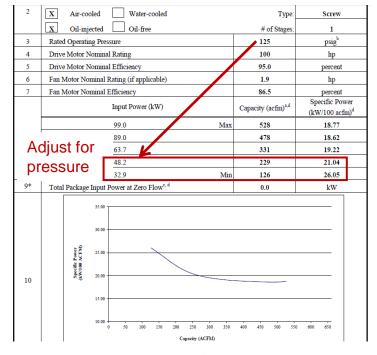
- Rated pressure = 125 psi, Discharge pressure = 110 psi
- Full load power = 90.3 kW @ 125 psi, adjust for lower pressure
- (125-110)/125 = 12% pressure reduction  $\rightarrow 6\%$  power reduction
- New full load power = 90.3 \* 0.94 = 84.9 kW
- % Loaded =  $200/444 = 45\% \rightarrow \%$  Power ~ 61%
- New power ~ 52 kW
- Average savings = 80 52 = 28 kW
- 28 kW x 8760 hours = 245,280 kWh/year



#### MODEL DATA - FOR COMPRESSED AIR Rated Capacity at Full Load Operating Pressure a, e acfm<sup>a,e</sup> 3\* 444 Full Load Operating Pressure 125 4 psig psig Maximum Full Flow Operating Pressure 5 125 Drive Motor Nominal Rating 6 100 hp Drive Motor Nominal Efficiency 7 95.4 percent Fan Motor Nominal Rating (if applicable) 8 3 hp Fan Motor Nominal Efficiency 89.5 percent Total Package Input Power at Zero Flow kWe 10\* 19.3 kW<sup>d</sup> 11 Total Package Input Power at Rated Capacity and Full Load Operating Pressure 90.3






## More efficient compressor example (VSD)

#### **Baseline: 100 HP modulating compressor**

- Average flow = 200 cfm; Peak flow = 400 cfm
- Average power = 80 kW; or 40 kW/100 cfm
- Discharge pressure = 110 psi

#### New 100 HP VSD compressor

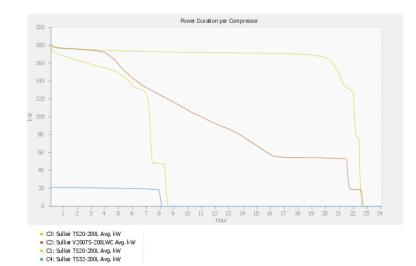
- Average power ~ 41 kW @ 22 kW/100 acfm
- Average savings = 80 41 = 39 kW
- 39 kW x 8760 hours = 341,640 kWh





## Estimating savings – more efficient controls

#### **Mechanism of Savings:**


Improved efficiency of air production

#### **Calculation Method:**

- Determine load/**unload** run time & energy
- Otherwise, determine the optimal compressor configuration (kW/100 cfm) for each baseline operating modes, and calculate the difference

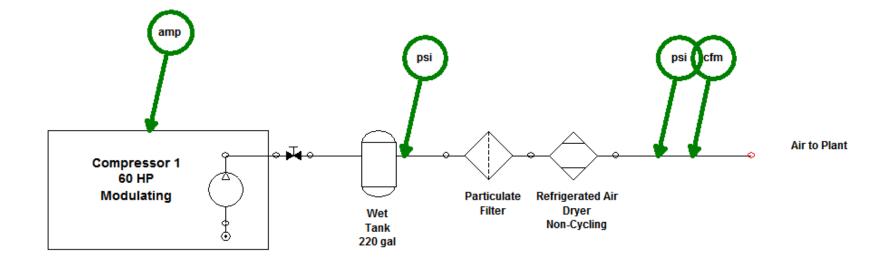
#### Pitfalls

- Theoretical savings may not match actual savings
- Savings depends on compressor type and size
- Difficult to achieve full savings if demand is highly variable

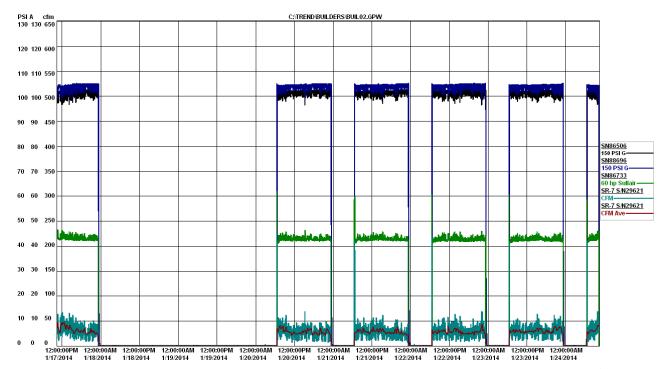




## Improved controls worked example

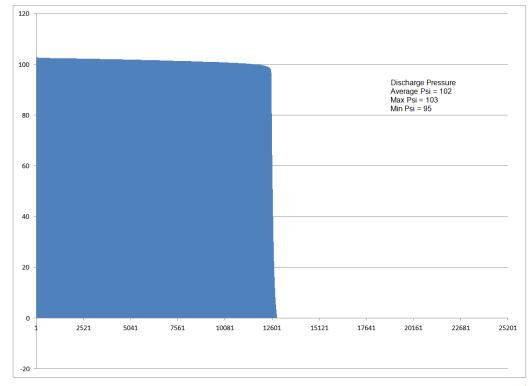

The detected unloaded run time is the control waste. Theoretical savings for perfect system control:

- 8 hours at 20 kW = 160 kWh
- 1 hour at 50 kW = 50 kWh
- 1 hour at 20 kW = 20 kWh
- 2 hour at 130 kW = 260 kWh
- Yearly total: 490 kWh x 365= 178,850 kWh

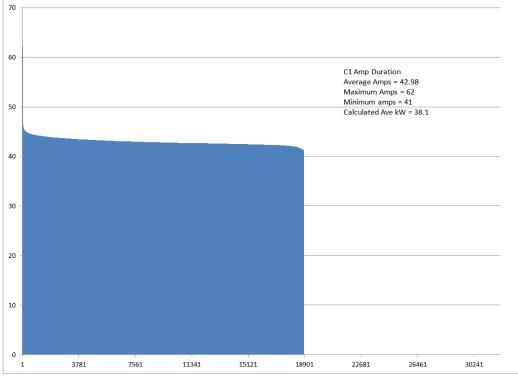





## Example project: cabinet making facility

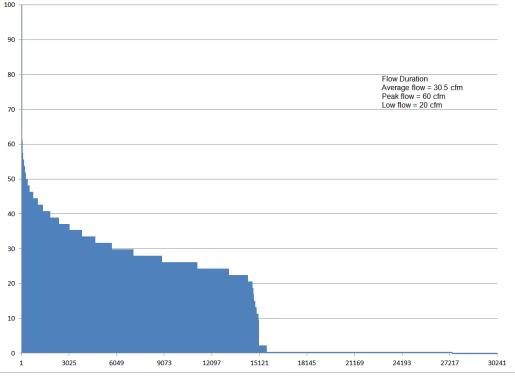







46
















#### **Base Case:**

Compressor

4200 hours x 38.2 = 160,230 kWh

Dryer

4200 hours x 1.9 = 7,980 kWh

Total = 168,210 kWh Peak = 40 kW Specific Power = 123 kW/100 cfm





#### Upgrades

Compressor

- 4200 hours x 8.33 kW = 34,986 kW
- Includes discharge pressure reduction
  Dryer
- 4200 hours x .2 = 840 kWh

Total = 35,826 kWh

Peak = 9 kW

Specific Power = 28 kW/100 cfm

|                                 | 23.8<br>20.6<br>17.5<br>14.6<br>11.7<br>7.6<br>re Input Power at Zer | Max<br>Min<br>to Flow <sup>c, d</sup>      | 116.0        99.8        83.5        67.3        51.0        26.7        0.0                                    |                                                                                                                                                                                         | 20.49<br>20.66<br>21.01<br>21.68<br>22.95<br>28.48<br>kW |
|---------------------------------|----------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                                 | 17.5<br>14.6<br>11.7<br>7.6<br>te Input Power at Zen                 |                                            | 83.5<br>67.3<br>51.0<br>26.7                                                                                    |                                                                                                                                                                                         | 21.01<br>21.68<br>22.95<br>28.48                         |
|                                 | 14.6<br>11.7<br>7.6<br>te Input Power at Zen                         |                                            | 67.3<br>51.0<br>26.7                                                                                            |                                                                                                                                                                                         | 21.68<br>22.95<br>28.48                                  |
|                                 | 11.7<br>7.6<br>ge Input Power at Zer                                 |                                            | 51.0<br>26.7                                                                                                    |                                                                                                                                                                                         | 22.95<br>28.48                                           |
|                                 | 7.6<br>e Input Power at Zen                                          |                                            | 26.7                                                                                                            |                                                                                                                                                                                         | 28.48                                                    |
|                                 | e Input Power at Zer                                                 |                                            |                                                                                                                 |                                                                                                                                                                                         |                                                          |
|                                 |                                                                      | ro Flow <sup>c, d</sup>                    | 0.0                                                                                                             |                                                                                                                                                                                         | kW                                                       |
|                                 | 35.00                                                                |                                            |                                                                                                                 |                                                                                                                                                                                         |                                                          |
| Specific Power<br>(RW/100 ACFM) |                                                                      | Capa                                       |                                                                                                                 | 120.0                                                                                                                                                                                   | 140.0                                                    |
|                                 | S S                                                                  | 15 00<br>10 00<br>0.0 20.0 4<br>Note: Grap | 15.00<br>10.00<br>0.0 20.0 40.0 60.0<br>Cap<br>Note: Graph is only a visual<br>Note: Y-Axis Scale. 101 53, - 58 | 15.00<br>10.00<br>0.0 20.0 40.0 60.0 80.0 100.0<br>Capacity (ACFM)<br>Note: Graph is only a visual representation of the da<br>Note: Y-Axis Scale, 10 to 35. + 58W100acfm increments if | 15.00<br>10.00<br>0.0 20.0 40.0 60.0 80.0 100.0 120.0    |



51

# Estimating savings wrap-up

#### Methods

- Consider the appropriate accuracy
- Assess your data availability
- Start with a good baseline
- Consider your operating hours
- Identify the savings mechanism
- Understand the limitations of your calculation

#### Tips and tools

- How to use CAGI Sheets
  - > Adjusting for discharge pressure
- Getting the applicable kW/100 cfm
- Estimating flow from comp. status
- Leak rate estimation methods
- Different solutions and calculations for different compressor controls



### Questions and answers with Ron Marshall

#### Post in Q&A window or raise hand and unmute





# **Additional Resources**

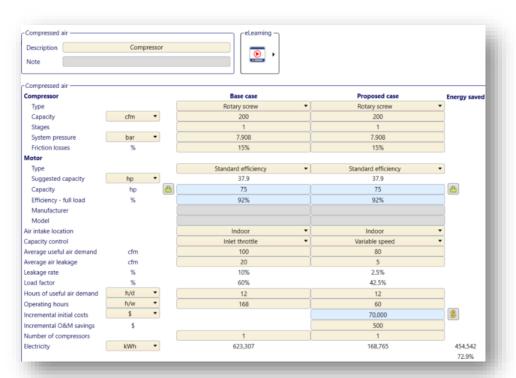


## **RETScreen - Compressed Air Calculator**

#### Feasibility - Individual measure -Compressed air - Compressor

#### Template assignment

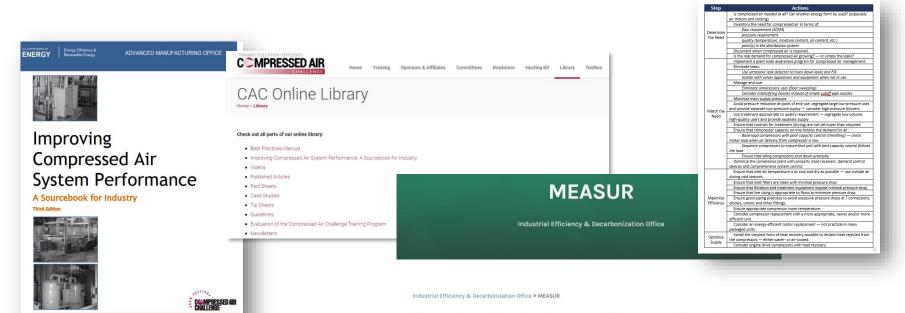
#### **Base** case


- · Rotary screw compressor
- · 200 cfm system, 75 hp motor, 100 psig
- Usage: 100 cfm
- · Leakage: 20 cfm
- · Capacity control with inlet throttling
- · System is never turned off

#### **Proposed** case

- · Variable speed control
- · Reduce usage by 20%
- · Fix 75% of leaks
- Automatic shutdown of system outside working hours (60 hours per week)
- · Estimate cost for efficiency measures \$70,000
- · Reduction in service costs: \$500 (O&M)

#### Other opportunities


- Upgrade to premium efficiency motor: \$5,000
- · Modify the air intake location: \$10,000







## Available through Energy Manager Learning Platform



MEASUR is a suite that includes a set of key software platforms and more than 70 calculators that AMO developed over the preceding decades. Altogether, these tools can help manufacturers improve industrial system efficiency and identify potential savings opportunities.





IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY

## Free expert support available through Save on Energy!



#### For more information: trainingandsupport@ieso.ca

Post your questions on the <u>Energy Manager</u> <u>Learning Platform</u> discussion forum to get advice, coaching, and support on:

- Establishing or improving energy management best practices
- Identifying and implementing industrial energy efficiency projects

Register for the Energy Manager Learning Platform (emss.goldfin.ca)







## Training incentives from Save on Energy

For Business &

Contractors



For You For Your Small Business

First Nations Energy Programs

**Training and** Support

Home > Training and Support > Training courses



#### Training courses

Get ahead with energy management training for your business! Save on Energy offers incentives of up to 50 percent for a range of industry-leading training courses for energy professionals.

Making sure your business reaches its full energyefficiency potential requires a true team effort. Having well-trained employees is crucial to powering your business forward. Whether it's by finding energysaving opportunities, implementing new solutions or making the most out of your energy-efficiency upgrades, these courses can give you the skills and career development you need now and in the future.

50% (up to \$750) incentive for Fundamentals and Advanced Management of **Compressed Air Systems** 



One last question...

# What's one tip from today you'll use when estimating savings?

Answer in chat or raise hand and unmute

| Ð    | Q   | 0      | ₿     | $\odot$ | ₿    | Ē     | 5     | +    |      |        | ļ   |
|------|-----|--------|-------|---------|------|-------|-------|------|------|--------|-----|
| Chat | Q&A | People | Raise | React   | View | Notes | Rooms | Apps | More | Camera | Mic |

