While waiting for the workshop to start...

Get ready to participate!

- Turn on your camera
- Find the unmute button and say "Hi" to check your audio

Find the "raise hand" button

Answer our opening question!

Why are you interested in compressed air audits?

Answer in the chat!

OCTOBER 2, 2025

Conducting compressed air audits

Jay Mullin

Energy Coach

Ron Marshall

Marshall Compressed Air Consulting

Follow along in the Participant Workbook!

Have the workbook open

Where to find the workbook:

In the chat

Conducting compressed air audits

Understand the purpose of a compressed air audit

Determine when an audit is needed and the scope

Start planning the audit that is right for your facility

Why do facilities conduct compressed air audits?

Answer in the chat

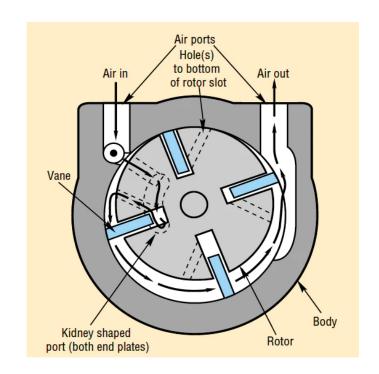
Compressed air is your most expensive utility

Importantly, 98% of systems do not meter energy use.

Many do not even have flow meters.

Potential efficiency improvements are typically in the range of 20-50%.

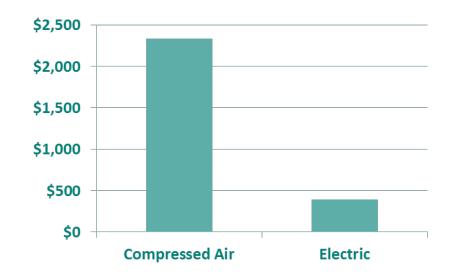
Without measurement, inefficiencies remain invisible.



Example: 1 horsepower (hp) air motor

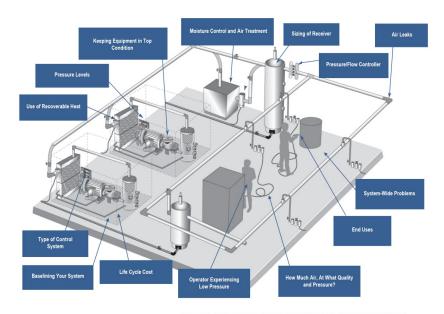
Operating a **1** hp air motor requires **7-8** horsepower of electrical power into the compressor:

- 30 standard cubic feet per minute (scfm) @ 90 pounds per square inch gauge (psig) are produced by the 1 hp air motor
- 6-7 hp at the compressor shaft are required for 30 scfm
- 7-8 hp of electrical power are required to produce
 6-7 hp at the compressor shaft


Source: compressed air challenge

Compressed air versus other energy sources

- The overall efficiency of a typical compressed air system can be as low as 10-15%.
- Annual energy costs for a 1 hp air motor versus a 1 hp electric motor, 5 days per week, two-shift operation, \$0.10/kWh:
 -\$2,330 (compressed air)
 -\$390 (electric)


Source: compressed air challenge

Why audit?

- Provides visibility about system performance
- Serves to quantify waste and areas of concern
- Supports the required capital expenditure (CAPEX) decisions to make improvements

IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY

Most audits address operational issues

- Low pressure
- Water/oil contamination
- Equipment aging or failing
- Future expansion plans
- Corporate mandate

Energy savings come when these issues are solved properly.

Case study: automotive plant

- An automotive manufacturer was experiencing compressor failure and occasional low-pressure levels
- Initiated a compressed air audit using an external expert
- Expert determined low pressure was being caused by a failed valve in a desiccant dryer
- Flow measurement determined a smaller compressor could be purchased, saving future costs
- 20% leakage level was found and costs were further reduced when leakage repaired

Case study: fibreglass plant

A fibreglass parts manufacturer had a compressor system using a single 60 hp variable speed drive rotary screw compressor, a 50 hp fixed speed compressor and non-cycling refrigerated air dryer:

- Compressor ran at 140 psi, the highest pressure possible
- Poor performance on a key die cutter and other machines causing production delays
- Pressure-related problems on parts presses
- Unknown compressed air costs and flows

	Hours	kW	kWh	\$ Cost	
Compressor	8760	36.5	319,740	\$	31,974
Dryer	8760	2.5	21,900	\$	2,190
Heater	4300	15.0	64,500	\$	6,450
Total	8760	46.4	406,140	\$	40,614

Other Costs	
Maintenance	\$ 5,000
Lost Production	\$12,000
Total	\$17,000

Case study: fibreglass plant (bis)

Data showed significant savings could be gained:

Measure	\$ Saved		% Saved	
New Comp/Pressure	\$	12,765	31%	
Leaks	\$	4,995	12%	
End Uses	\$	1,665	4%	
Filters	\$	332	1%	
Cycling Dryer	\$	2,100	5%	
Heater	\$	6,450	16%	
Turn off night/weekend	\$	1,850	5%	
Total	\$	30,157	74%	

Other Savings	
Maintenance	\$ 3,000
Lost Production	\$12,000
Total	\$15,000

Beyond energy

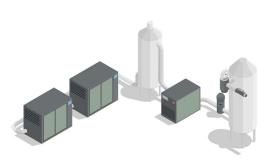
Many operators just want their system to run in a trouble-free manner. Energy efficiency is important, but the most value is most often gained from:

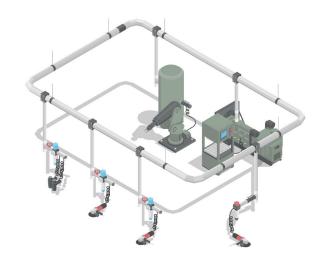
- Reliability gains the system runs continuously without interruption
- Better pressure stability plant pressure is stable and within limits
- Air quality the flow of air is clean and dry

What is a compressed air audit?

It is the systemic evaluation of compressed air system performance, including supply, distribution and demand.

Benefits include:

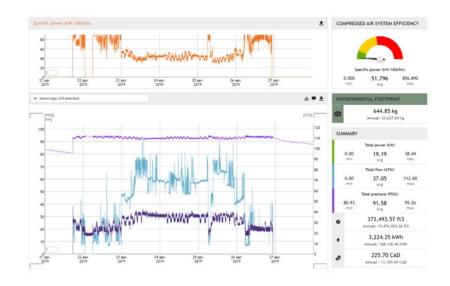

- Increased reliability
- Improved quality
- Lower maintenance
- Reduced operating costs
- Improved capital planning
- Identified hidden problems
- Helps build the case for improvement



What is involved

Supply side

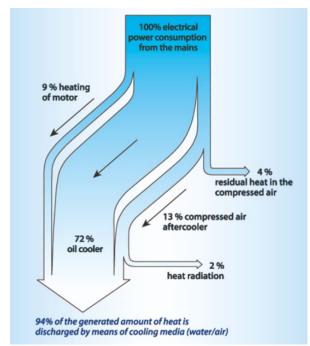
Demand side



Key performance indicators (KPIs)

When data are collected and processed KPIs can be calculated to tell the efficiency and effectiveness of the system:

- **kWh** = overall energy use to track costs
- kW/100 cfm = specific power to show production efficiency
- Leakage as a percentage of flow to track waste
- Assessment of inappropriate uses



Key improvement principles

Basic ways to improve efficiency:

- 1. Compress air more efficiently
- 2. Use less compressed air
- 3. Reduce compressed air pressure
- 4. Use compression heat

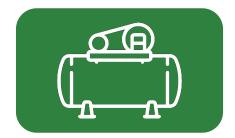
Source: Compressed Air Best Practices

Sources of waste

- Leaks = 20-30%, sometimes as high as 80%
- Artificial demand 10-15%, due to higher pressure than needed
- Inappropriate uses 10-15%, due to misuse of compressed air
- Poor compressor controls due to unmanaged compressor settings
- Inefficient equipment, compressors, dryers, filters and drains

Who should conduct the audit?

Staff


identification of opportunities

Lower cost

Cons: May not have expertise to

diagnose more complicated

issues

Equipment supplier

Knowledgeable

Free

Tend to focus on supply side

Independent auditor

Includes demand side

Unbiased

Tend to find more demand-side savings

Not free

Difficult to find qualified auditors

Using measurements

- Measurements take the "vital signs" of a compressed air system to see how it is operating and assess system efficiency.
- Once the system baseline is established, it can be tracked over time to monitor improvements or degradations in system performance.
- This information is then converted into dollars and communicated to management.

What gets measured?

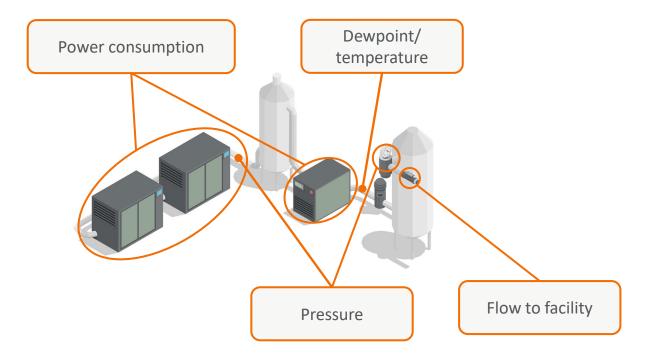
Basic measurements

- ✓ Flow out of compressor room
- ✓ Pressure at compressor discharge
- ✓ Power of compressors and dryers*
- ✓ Leakage**
- ✓ Temperature of compressors, dryers and various points**

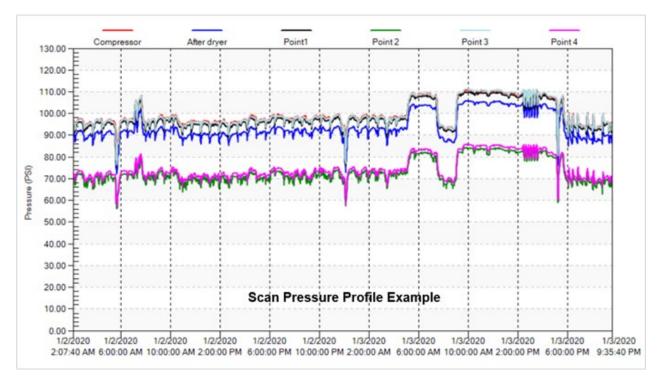
Enhanced measurements

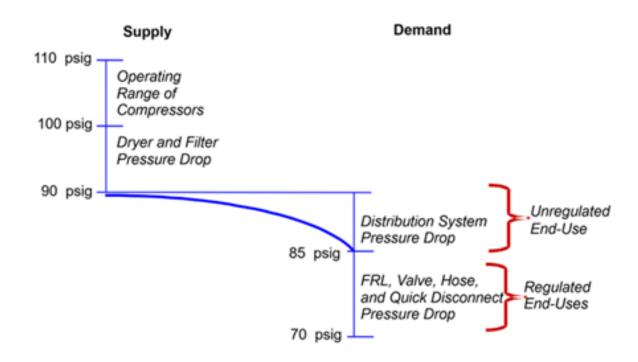
- ✓ Leaks
- ✓ Inappropriate uses
- ✓ Pressure drop
- ✓ Dewpoint
- ✓ Oil content of air
- ✓ Air contaminant particle size
- ✓ Microbial contamination
- ✓ System reliability

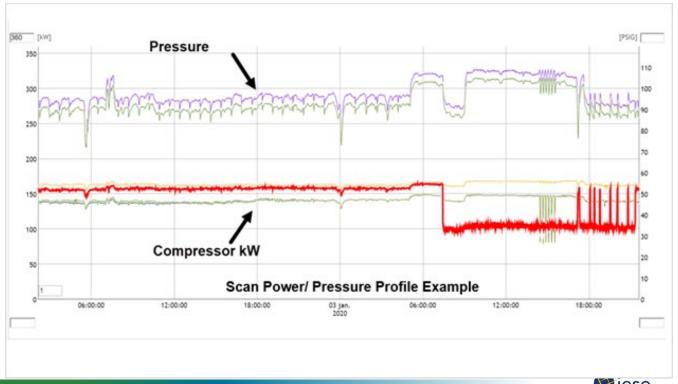
Audit duration

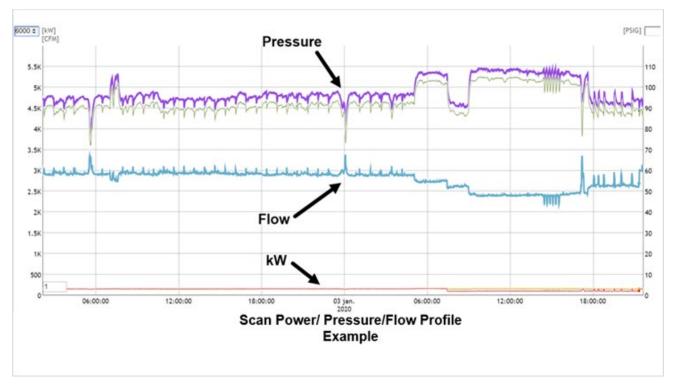

How long to measure?

- Full year is usually impractical
- Measure repeating periods
- Determine how many repeating periods in a year, multiply to annualize
- Care should be taken for seasonal plants
- Typical minimum measurement period of seven days
- Data analyzed in seven-day multiples
- Might need to divide data into day types


Should you consider permanent meters?


Example data chart: system pressure


Example data chart: pressure drop



Example data chart: power

Example data chart: flow

Example: leak survey

- 20-30% demand typically lost
- Ultrasonic detection or acoustic imaging
- Fast return on investment (ROI) if compressors controlled well
- Limited savings if poor control
- Should be done quarterly
- General leak levels can be seen on main flow meter

List of Repairs Remaining

Tag	Department	Workplace	Machine	Grade	Date of Repair	Est. Flow - m³/min	Est. Savings/yr
L0001	Boiler Room	Floor 1	Filter Drain	3	-	0.0646	\$213
L0002	Boiler Room	Floor 1	Air Dryer	2	-	0.0233	\$77
L0003	Boiler Room	Floor 1	Regulator By NW Door	1	-	0.0026	\$9
L0004	Boiler Room	Floor 2	Expansion Tank	1	-	0.0026	\$9
L0005	Boiler Room	Floor 2	Expansion Tank	1	-	0.0026	\$9
L0006	Boiler Room	Floor 2	SW Corner N warehouse return valve	2	-	0.0233	\$77
L0007	Cooker Room	Floor 1	Valve HV1136	3	-	0.0646	\$213
L0008	Cooker Room	Floor 1	By HV1224	3	1-0	0.0646	\$213
L0009	Cooker Room	Floor 1	Hot Cond Valve	2		0.0233	\$77
L0010	Floor 10	Granary	Service Hose Drop	3	-	0.0646	\$213
L0011	Floor 10	Granary	Chute 2	1		0.0026	\$9
L0012	Floor 10	Granary	Chute 4	1	-	0.0026	\$9
L0013	Floor 10	Granary	Chute 7	1	-	0.0026	\$9
L0014	Floor 5	Granary	Filter 6	2	-	0.0233	\$77
L0015	Floor 4	Yeast Room	Valve Hv 1275	3	-	0.0646	\$213
L0016	Fermenting Room	Mezzanine	Fire System West End	4.02	-	0.1477	\$486

When an audit is needed

- The plant may be expanding, sizing needed
- Low air pressure events need solving
- Air quality is poor
- Management wants to know the costs
- Management wants to know areas of improvement

Typical triggers

Operational issues

- Low-pressure issues
- Water/oil contamination
- Persistent downtimes

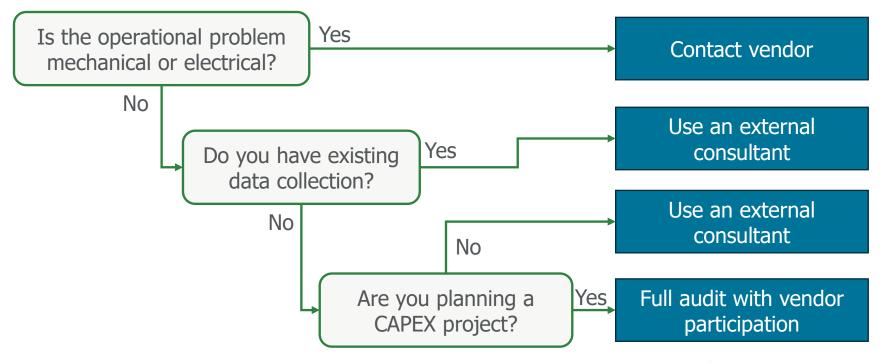
Energy savings

- High system hp
- High flow
- High kW/100 cfm

Capital planning

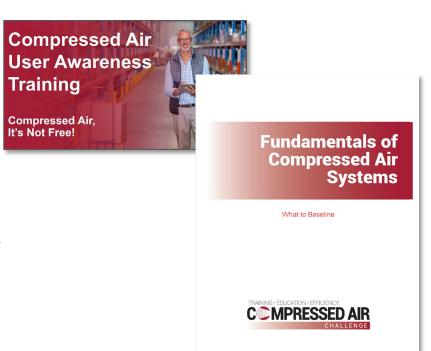
- Equipment nearing end of life
- Planned expansion
- Changing operational conditions

Proportionality principle


Level of study depends on system size and complexity:

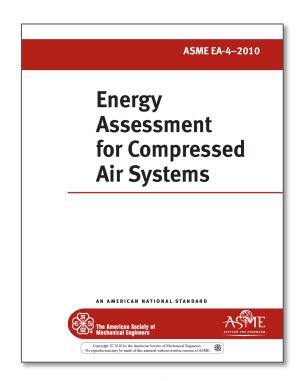
- **Small** = walkthrough may be adequate
- **Medium** = seven-day logging
- **Large** = full audit and permanent monitoring

Decision tree



Awareness gaps

- Most systems run unmonitored, and operators do not know air system costs
- System KPIs are unknown
- Audits make waste visible
- Training increases awareness about issues and explains what to do about them
- Compressed Air Challenge training is available and qualifies for Save on Energy rebate



Compressed air audits

- The first step in optimizing any compressed air system is to conduct a thorough assessment.
- Measurements and data collection are required.
- No two compressed air systems are the same; however, there are always common elements.
- A good reference document is the ASME EA-4
 "Energy Assessment for Compressed Air Systems"
 standard.

Compressed air audit needs

These things are needed:

- Sufficient resources and funding
- Full management support
- Good communication
- Access to all needed information.
- Experienced personnel who know the plant
- Clear assessment goals
- Scope of work (SOW)

Internal resources needed

- Data loggers
- Permanent meters
- Trained and experienced staff Compressed Air Challenge (CAC)
- By far, the easiest way to have a compressed air system measured is by bringing in a competent service company that already has a good set of measuring devices.
- Just make sure that company agrees to follow your measurement plan rather than just staying in the compressor room.

Example case study: gypsum board manufacturer

A gypsum board manufacturer was running with a compressed air system using two 100 hp screw compressors and two non-cycling refrigerated air dryers. The plant manager wanted to replace the failing air compressor but did not know what size to purchase.

Some of the initial problems experienced:

- Aging compressors with poor reliability
- Low-pressure problems at plant dust collectors
- Low pressure due to high flow transient events
- Water in the compressed air system in summer
- Frozen air lines in winter months

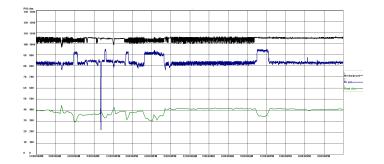
Example case study: gypsum board manufacturer (2)

Data analysis revealed the following:

- 41/2 24-hour weekday shifts resulting in 5,280 hours per year
- Average flow 564 cfm, with 670 cfm peaks during main shifts
- Leakage 30 cfm
- Compressor average power 132 kW
- Dryer purge 180 cfm
- Compressor specific power calculated at 23.4 kW/100 cfm
- Including dryer, this totals 34.4 kW/100 cfm

	Hours	kW	kWh	\$ Cost
Compressor	5280	132.0	696,960	\$ 69,696
Dryers	5280	0.0	-	\$ -
Total	5280	79.6	696,960	\$ 69,696

Other Costs	
Maintenance	\$30,000
Lost Production	\$ 5,000
Total	\$35,000



Example case study: gypsum board manufacturer (3)

The consultant examined the plant pressure profile and found significant pressure loss in a short length of pipe. A butterfly valve was found partially closed with a broken handle that looked like it was open.

Supply-side improvement measures recommended:

- Replace one compressor with 150 hp two-stage VSD
- Configure second compressor for automatic start
- Install 2,000 gallons of main storage
- Replace dryer with externally-heated with dewpoint control
- Upsize filters to reduce pressure loss and pressure
- Install automatic mixing dampers on compressor to direct heat of compression into plant, displacing natural gas costs
- Install compressed air efficiency monitoring system

Example case study: gypsum board manufacturer (4)

Demand-side improvement measures recommended:

- Repair faulty butterfly valve
- Repair leaks
- Install receivers at dust collectors, reduce pulse frequency

		%
Measure	\$ Saved	Saved
Control	\$20,742	29.8%
Pressure (10 psi)	\$2,152	3.1%
Leaks	\$851	1.2%
Drains	\$0	0.0%
Dryer Purge	\$12,499	17.9%
End Uses	\$0	0.0%
Filters	\$502	0.7%
Dryer Heater	\$997	-1.4%
Total	\$35,750	51%

In addition to this some non-electrical savings were predicted:

Other Savings	
Maintenance	\$15,000
Lost Production	\$ 5,000
Gas Heating	\$ 3,840
Total	\$23,840

Example case study: gypsum board manufacturer (5)

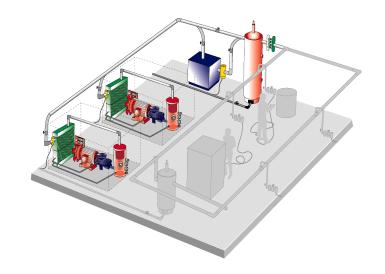
The proposed project demonstrates a particularly good payback of 1.5 years. Again:

- Had the consultant simply focused on changing out the air compressor, the benefits to the customer would have been much lower.
- The problem with the closed valve was a significant find. The whole system approach was the primary factor in the success of this project.

Project Estimate	
Compressor	\$ 64,700
Dryer	\$ 30,000
Filter	\$ 1,800
Filter	\$ 1,800
Receiver	\$ 5,000
Installation Mechanical	\$ 9,000
Installation Electrical	\$ 7,000
Efficiency Monitoring	\$ 3,000
Installation Ventilation	\$ 13,000
Total	\$ 135,300

A summary of the project is as follows:

Total Project Benefits	
Electrical savings	\$ 35,750
Other savings	\$ 23,840
Total Benefits	\$ 59,590


Project Cost	\$ 135,300
Less Utility Incentive	\$ 45,000
Total project cost	\$ 90,300
Simple Payback (years)	1.5

Key considerations for audit scope

- Facility size/goals determines audit type and duration
- Data availability determines how much work is needed to capture a full set of profiles
- Include supply + demand this is essential for a useful audit that captures all potential improvement measures

Scoping out your audit

Information to be gathered

- Facility size
- Current equipment (specifications)
- Currently available data
- Purpose of audit

Scope to be defined


- Supply side versus demand side
- What needs to be measured
- How long to measure data
- Inclusion of raw data with report

Audit deliverables

- Raw data for review by others and to prove an initial baseline
- · KPIs:
 - kW/100 cfm
 - kWh
 - leak %
- Recommendations for system improvements
- Business case ROI based on estimated savings

Choosing providers

Questions to ask and points to cover with potential service providers:

- How experienced are the staff providing assessment services?
- Ask for a sample of similar work, staff experience and client references
- While leak detection is useful to a system assessment, should the audit include more?
- Recommendations should be product-neutral
- Solutions should be recommended only if needed
- Solutions should be performance-based, not brand-based

Assessing audit quotes

- Check if scope includes pressure, flow, power, Consortium for Energy Efficiency standard, etc.
- Ensure demand-side is included, not just compressor room
- Ask: Are assumptions realistic (hours, costs, leakage)?
- Are there any red flags that may suggest auditor bias?
- Look for demand assessment, including leaks and inappropriate uses
- Ensure measurement period matches plant characteristics
- Avoid vague scopes of work
- Ask for a detailed scope of work
- If you are the receiver of the quote, make sure you receive compressed air training beforehand so you understand what needs to be measured.

Check for minimum scope

As per the Consortium for Energy Efficiency, an audit should:

- Measure power, pressure and flow at minimum
- Include demand-side study
- Have seven-day minimum duration, more if the plant has highly variable demand
- Report should include raw data for assessment by others and to compare with baseline after a project

Compressed Air System Audit Specification

Minimum Elements for Compressed Air System Audits

For information, contact: Christopher Sullivan-Trainor Program Manager Compressed Air Systems Committee Caullivan-trainorfeet org. 78:87:25:31 Consortium for Energy Efficiency 38 Village Read Middleton, MA (1934)

Report to include

- Baseline profiles
- KPIs
- Document assumptions

Executive Summary

This compressed air assessment aimed to evaluate the current system's performance, identify inefficiencies, and propose recommendations for reducing energy consumption, improving reliability, and optimizing productivity. Key findings and opportunities for improvement are summarized below:

1. System Inefficiencies:

- The air compressor operates in inefficient modulating mode, consuming excessive energy (64.3 kW/100 cfm vs. an optimized 23 kW/100 cfm).
- The desiccant dryer wastes 60 cfm in constant purge, representing 36% of compressed air output, despite being underutilized.
- Inadequate wet and dry storage (effective storage limited to 120 gallons) reduces the system's ability to stabilize pressure and optimize compressor operation.
- The piping system (2-inch header) is undersized for the compressor's capacity, causing pressure losses.

2. Compressor Condition:

- The compressor is old, unreliable, and in poor mechanical condition, leading to safety risks, high power consumption during unloaded states, and reduced efficiency.
- Spiral valve control is non-functional, further degrading performance.

3. Energy Wast

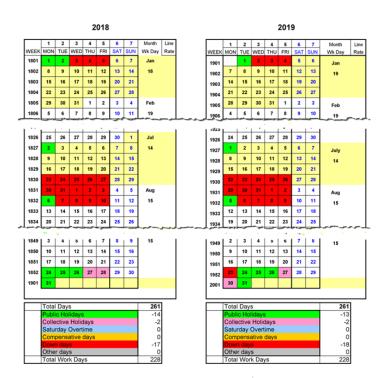
- High energy consumption during light loads and non-production periods due to ineffective control and excessive dryer purge.
- Leakage and flow during non-production hours account for significant wasted energy.

4. Air Quality Issues:

- The dryer and filters are in poor maintenance condition, resulting in water contamination and compromised air quality.
- o Timer drains waste air unnecessarily.

Opportunities for Improvement

1. Compressor Upgrade:


 Replace the existing compressor with a modern, efficient model (e.g., Variable Speed Drive (VSD) or load/unload control) to achieve specific power as low as 20 kW/100 cfm.

Assumptions to question

- Operating hours
- Electricity rate
- Leakage % and estimated savings method (measured versus assumed)
- Baseline data quality

Report red flags

- Larger compressor recommended without demand reduction review
- Savings based on inflated rates or exaggerated run hours
- Leak savings do not account for compressor control type
- Generic reports or sales pitches

Executive Summary

This compressed air assessment aimed to evaluate the current system's performance, identify inefficiencies, and propose recommendations for reducing energy consumption, improving reliability, and optimizing productivity. Key findings and opportunities for improvement are summarized below:

1. System Inefficiencies:

- The air compressor operates in inefficient modulating mode, consuming excessive energy (64.3 kW/100 cfm vs. an optimized 23 kW/100 cfm).
- The desiccant dryer wastes 60 cfm in constant purge, representing 36% of compressed air output, despite being underutilized.
- Inadequate wet and dry storage (effective storage limited to 120 gallons) reduces the system's ability to stabilize pressure and optimize compressor operation.
- The piping system (2-inch header) is undersized for the compressor's capacity, causing pressure losses.

2. Compressor Condition:

- The compressor is old, unreliable, and in poor mechanical condition, leading to safety risks, high power consumption during unloaded states, and reduced efficiency.
- Spiral valve control is non-functional, further degrading performance.

3. Energy Wast

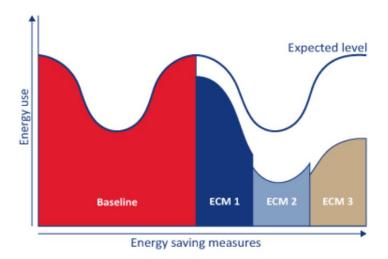
- High energy consumption during light loads and non-production periods due to ineffective control and excessive dryer purge.
- Leakage and flow during non-production hours account for significant wasted energy.

4. Air Quality Issues:

- The dryer and filters are in poor maintenance condition, resulting in water contamination and compromised air quality.
- Timer drains waste air unnecessarily

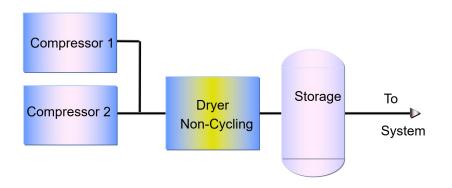
Opportunities for Improvement

1. Compressor Upgrade:


 Replace the existing compressor with a modern, efficient model (e.g., Variable Speed Drive (VSD) or load/unload control) to achieve specific power as low as 20 kW/100 cfm.

Plan on verification to prove savings

- Savings must be measured
- Measurement and verification (M&V) ensures credibility and proves savings
- Avoid paper savings
- Use the same monitoring system as the original baseline, preferably permanent monitoring

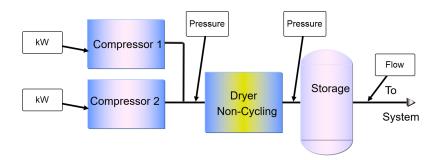

Case study example: tractor plant

Tractor plant:

- 2 x 200 hp compressors, 100 psi
- Load/unload control
- Two 2,000 cfm water-cooled non-cycling dryers

Problems experienced:

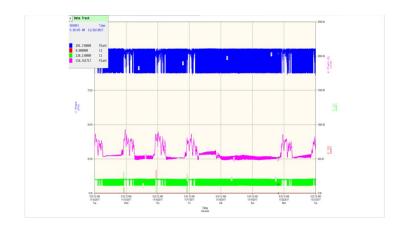
- Air system ran 24 hours per day, seven days per week, but production shift was only 8 hours x 5 days per week
- Unknown compressed air energy costs and flows



Case study example: tractor plant (2)

Monitoring with data loggers:

- Air pressure before and after the air dryer
- Air compressor power input to create a power profile
- Compressed air plant flow to create a flow profile
- No demand-side study requested

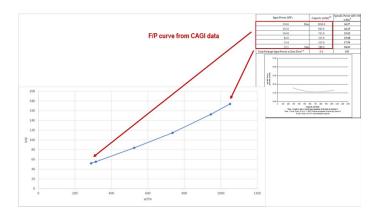


Case study example: tractor plant (3)

Data analysis demonstrated the following:

- Plant pressurized 24 hours x 7 days per week
- Production 10 hours, 5 days per week
- Average pressure 98 psi
- Average flow 540 cfm
- Non-production flow 510 cfm
- Compressor average power 148 kW
- Dryer average power 14 kW
- Compressor specific power: 27 kW/100 cfm
- Including dryer specific power: 30 kW/100 cfm

	Hours	kW	kWh	\$ Cost
Compressor	8760	148	1,296,480	\$ 31,974
Dryer	8760	14	122,640	\$ 2,190
Total	8760	162	1,419120	\$ 141,912

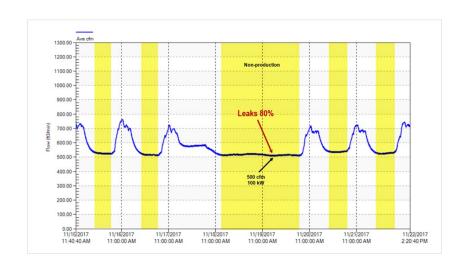

Case study example: tractor plant (4)

Customer wants:

- New two-stage VSD compressor
- Cycling dryer

Additional measures recommended by consultant:

- Reduce leaks
- Eliminate off-hour end uses
 - Air motors to mix paint found to be not needed
 - Office HVAC system pneumatics 2 cfm
- Turn off compressed air system 70 hours per week
- Right size the dryers


Case study example: tractor plant (5)

Leakage repair:

- Using 16 kW/100 cfm, 100 cfm reduction = 16 kW
- About 140,000 kWh in annual reduction expected
- \$14,000 in reduced cost

Reduced run time:

- 52 kW at 510 cfm
- Estimated 70 hours per week
- 3,650 fewer hours operating
- 309,000 kWh for \$30,900 in savings
- Small HVAC compressor added at \$440 per year

Case study example: tractor plant (6)

Dryer savings:

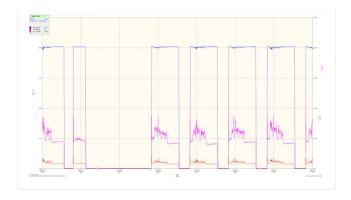
- 1,200 cfm resize consumes 10.5 kW
- About 140,000 kWh reduction expected
- At 45% loading, 8.4 kW saved compared to previous large units
- 73,600 kWh and \$7,360 savings

Savings summary:

- Based on preliminary estimate, payback period should be less than one year
- Heat recovery \$3,500 per year
- Reduced maintenance \$2,500 per year
- Energy saved 309,000 kWh for \$30,900
- · Attractive savings approved by management

Savings
0%
17%
34%
51%
68%
85%

Measure	Saved kWh	Saved \$	Cost \$
New VSD Compressor	512,585	\$ 51,259	\$120,000
New Cycling Dryer	73,661	\$ 7,366	\$ 17,500
Reduced Hours	309,009	\$ 30,901	\$ 3,000
Reduced Leakage	84,826	\$ 8,483	\$ 2,000
Install costs			\$ 30,000
Subtotal		\$ 98,008	\$172,500
Less Incentive			\$ 88,000
Final Estimate		\$ 98,008	\$ 84,500

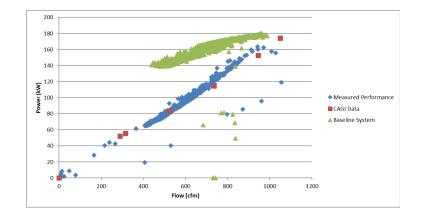


Case study example: tractor plant (7)

Verification logging:

- Demonstrated savings slightly less than expected
- Investigation revealed fewer leaks repaired than expected
- Leak repair still ongoing
- Turning off the system during off hours indirectly reduced leakage load by 40%

	Hours	kW	kWh	\$ Cost
Compressor	5110	95	486,180	\$ 48,618
Dryer	5110	6	30,660	\$ 3,066
Total	5110	162	516,840	\$ 51,684
Saved	3650	103	902,280	\$ 90,228



Case study example: tractor plant (8)

Total savings:

- Additional benefits added to electrical savings
- Project payback less than one year
- System curve illustrates good savings from base case, compressor operation near expected

	Savings Install Annual Cost			
Electrical Savings	\$	90,280	\$	84,500
Heat Recovery	\$	3,500	\$	-
Reduced Maintenance	\$	2,500	\$	-
Total	\$	96,280	\$	84,500
Simple Payback	10.5 month		nonths	

SAVE

Developing your action plan

- Review action plan template on page 10 of the Participant Workbook
- Get started by filling it out to plan your audit

Ask Ron questions!

DEVELOP A COMPRESSED AIR AUDIT ACTION PLAN

Total compressor			
horsepower: Compressor	Make/Model	Horsepower	Control approac
Compressor	маке/ моце	Horsepower	сониот арргоас
Reason for conducting audit:	Low pressure Water/oil cor Microbial con Aging or faili Future expar Growth in co Utility costs Corporate ms	ntamination tamination ng equipment sion plans mpressed air demand	
Audit goals:	□ otner:_		
Permanent metering in place:			
Who will conduct the audit:	☐ Internal staff☐ Equipment supplier☐ Independent auditor		
Audit scope:	☐ Supply side☐ Demand side		
Data to collect	Loc	ation	Duration
kW			
Flow (cfm)			
Pressure (psi)			
Leakage rate (%)			
Inappropriate uses			
Temperature Dewpoint			
Air contaminants (specify)			
/ Contaminants (specify)			
M&V plan:			

Call to action

- Compressed air is too costly to ignore
- Conducting study reveals hidden savings
- Savings can be electrically, reliability or productivity-related
- Take training to understand system issues
- Audit your system to find issues
- Take action to save operating costs and increase profits

Resources

- In Compressed Air Challenge Library
- Consortium for Energy Efficiency (CEE)

GU-DEL-ZES

FOR SELECTING A COMPRESSED AIR SYSTEM SERVICE PROVIDER

Compressed air is one of the most important utility requirements of the typical industrial manufacturer. Compressed air is used throughout many processes such as pneumatic tools, pneumatic controls, compressed air operated cylinders for machine actuation, product cleansing, and blow-offs. Without a consistent supply of quality compressed air, a manufacturing process can stop functioning.

The Compressed Air Challenger (*CAC) is a rational collaboration that was orseted to assist industrial facilities in anterioring greater reliability, improved quality, control, and lower operating coats for their compressed air systems. The CAC encourages facilities to take a system approach to optimizing compressed are operation. Taking a systems approach means looking begroot individual components to assess how well your compressed air system means schalar production needs. This is known as "matching supply with demmand" it also means identifying the root causes of system proclems, rather than treating the symptoms.

For most industrial facilities, this approach will require sepocialized knowledge and equipment, both to assess system meets and so continues to service those needs over time. Outside assistance frequently is required. System assessment services and engines global manifestance may require the task of separative films, although outside the services of the services

The CAC also is developing guidelines to define three levels of system analysis services, independent of the type of firm delining these services. These three involves of services include: a wall-brough evaluation, a system assessment, and a high-value of the control of the CAC Levels of Analysis of Compressed Air Systems on pipule three, or you can visit the CAC website at your compressed air control or consider the following in selecting a service provider, a compressed air user follows:

Compressed Air System Audit Specification

Minimum Elements for Compressed Air System Audits

For information, contact.
Christopher Sullivam-Trainor
Program Manager
Compressed Air Systems Committee
Coultivant-rainor@tool.org
Consortium for Energy Efficiency
Consortium for Energy Efficiency
Middleton, MA 01949
Middleton, MA 01949
My 17, 2022

Upcoming training opportunity

Fundamentals of Compressed Air Systems – November 13

Organized by CIET

- Covers best practices for compressed air system optimization
- Qualifies for Save on Energy 50% rebate
- Great option for facilities planning deeper engagement after this workshop

Stay connected with tools and resources

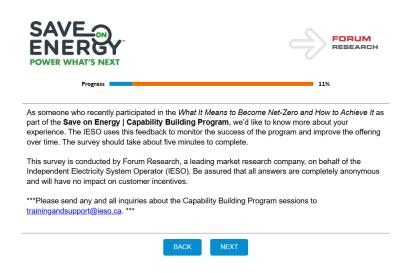
- Virtual one-on-one coaching: <u>post-webinar support intake form</u> for tailored support for organizations to manage energy resources effectively
- Monthly bulletin: <u>sign up</u> to receive monthly training updates on all Save on Energy training and support new tools and resources
- <u>Live training calendar</u>: visit this page to easily register for upcoming events and workshops
- Training and support webpage: visit this page to access all training and support materials

A podcast by Save on Energy: The Energy Manager's Playbook

Questions or feedback? trainingandsupport@ieso.ca

Presented by IESO's Save on Energy training and support team:

- ☐ Features real-world stories from Ontario's energy management community
- Covers the industrial, institutional, commercial and municipal sectors
- ☐ Focused on challenges, successes and practical insights
- Bite-sized episodes for quick and impactful learning
- ☐ A resource for energy professionals and decision-makers


Tune in on your preferred platform: saveonenergy.ca/training-and-support/podcast

Upcoming survey: we want your feedback!

The survey will be sent from: surveyinfo@forumresearch.com

- Check your email! A survey is coming your way soon.
- Why? Help us improve our training programs.
- Who? Conducted by Forum Research on behalf of the IESO.
- Time? Takes only five minutes to complete.
- Confidentiality: Your responses are anonymous and won't impact participation or incentives.

One last question...

What is **one thing** you will do in the next week to plan your next compressed air audit?

Thank you!

SaveOnEnergy.ca/Training-and-Support

trainingandsupport@ieso.ca

Sign up for Save on Energy's quarterly business newsletters for the latest program, resource and event updates

