OCTOBER 30, 2024

Efficient electrification workshop #4 – Part 1: Modelling HVAC with RETScreen Expert

Stephen Dixon, Knowenergy Michel Parent, Technosim

Agenda

- Welcome and introductions
- Quick overview of RETScreen Expert
- Overview of how to use RETScreen Expert to model HVAC systems
- Presentation of HVAC circumstances
- HVAC circumstances
- Modelled results and solutions
- Cautions to avoid poor results
- Wrap-up and Q and A

Quick overview of RETScreen Expert

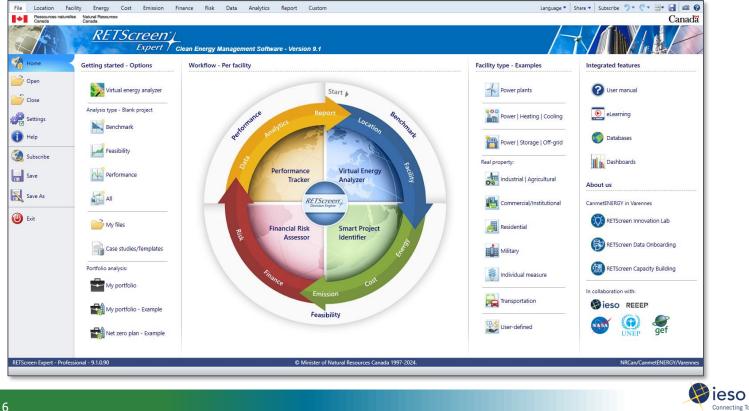
RETScreen Expert

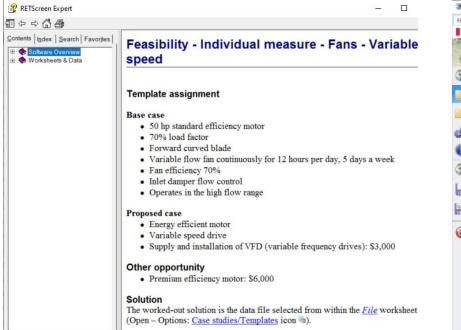
- Intelligent decision support tool to enable stakeholders to rapidly identify, assess, optimize and track the performance of clean energy investments over the entire project life cycle
- 38 languages covering two thirds of the world's population

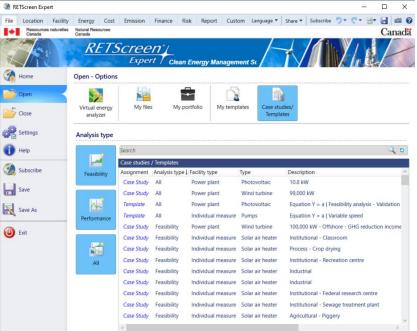
RETScreen development

- Natural Resources Canada (CanmetENERGY)
- Renewable Energy and Energy Efficiency Partnership
- Independent Electricity System Operator
- United Nations Environment Programme
- National Aeronautics and Space Administration
- Global Environment Facility

latural Resources Canada



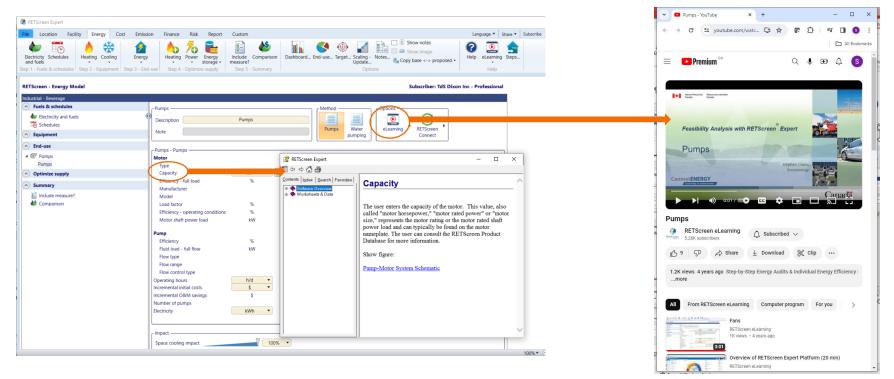

The complete toolbox! Let's take a quick look



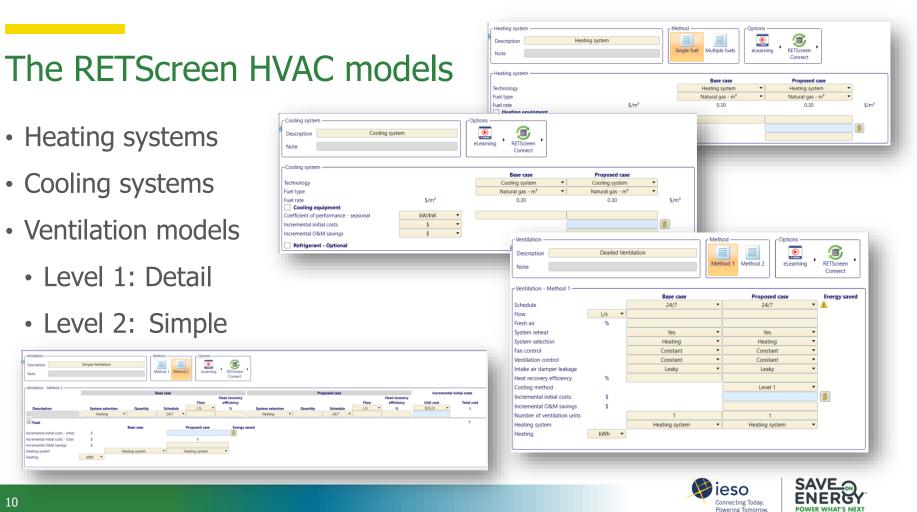
Connecting Today Powering Tomorrow.

POWER WHAT'S NEXT

Learning resource – case studies and templates

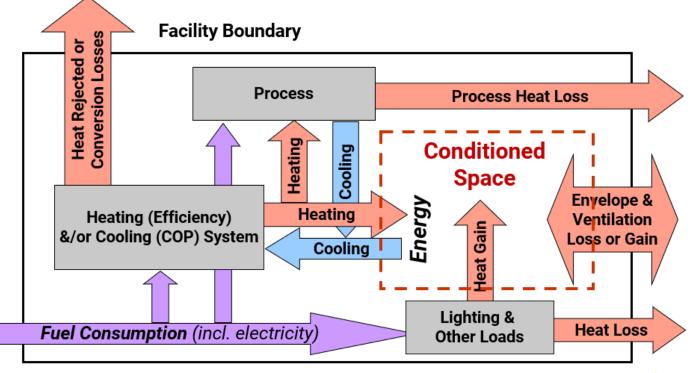


Learning resource – contextual text and video help



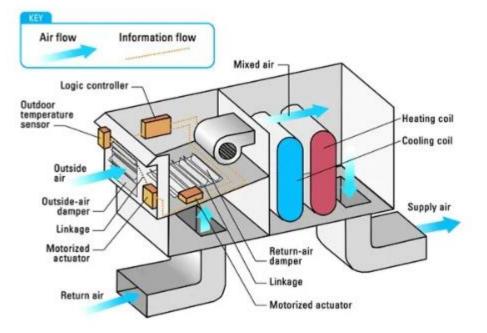
8

Modelling a basic HVAC system



Total

Heating


RETScreen and HVAC energy balances

Heating, ventilation and cooling with a rooftop unit (RTU)

Models required

- Electricity and fuels
- Schedules
- Heating system
- Cooling system
- Ventilation
- Motor/fan

ETScreen - Energy Model								Subscriber:	TdS Dixon Inc - Professiona
ommercial/Institutional - Office	space with a v	warehouse - Services							
 Fuels & schedules 				Heating	Cooling	Electricity	Simple	Include	
w Electricity and fuels		Energy	-		-	-	payback	measure?	
🗑 Schedules	Fuel c	onsumption - base case	•	kWh 🔻	kWh	kWh	yr	✓	
Equipment	Heatir	ng							
Heating	RTU F	urnace						\checkmark	
RTU Furnace	Coolin	ng l							
Cooling	RTU A	VC						\checkmark	
RTU A/C	Ventila	ation							
	RTU V	entilation (HVAC)		53,666	2,395		Immediate	✓	
 End-use 	Electri	ical equipment							
Ventilation	RTU F	an Motor				30,660	1.1	✓	
RTU Ventilation (HVAC)	Total			53,666	2,395	30,660	0.8		
Electrical equipment									
RTU Fan Motor									
• Optimize supply									
Summary									
Include measure?									
all Comparison									

Demonstration – build the system

There is one rooftop unit providing space heating and cooling to the building:

- The heating equipment is a furnace with a seasonal efficiency of 80%
- The cooling equipment is a compressor unit with a seasonal COP of 3.0

Base Case – Office and Warehouse Ventilation (Method 1)

- Building is cooled to 21°C, on the same schedule as heating
- 5,000 cfm capacity rooftop unit provides ventilation, with heating and cooling as required
- Ventilation (fresh air) is 20% os system airflow
- The fan is driven by a 5hp motor (measured at 3.5 kW) (set heating and cooling impact to 0%)
- The ventilation system operates 24 hours 7 days a week (constant)
- Dampers have medium leakage
- The system does not have heat recovery

Now let's improve the system

Proposed Case

- The building is only occupied 10 hours per day, 6 days per week
- Modify the fan and ventilation control to operate according to the occupancy schedule
 - You will need to add a schedule in the model
- Implement a night time setback and set up of 4°C during unoccupied periods
- Cost of controls to implement fan, ventilation, and temperature control is \$3,000

Hint: You need to define a new <u>Schedule</u>, <u>Heating equipment</u>, <u>Cooling equipment</u>, two <u>Ventilation</u> <u>equipment</u> sheets and a <u>Fan motor</u> sheet (under <u>Electrical equipment</u>)

Results of model

ETScreen - Energy Model						:	Subscriber: T	dS Dixon Inc - Professio
ommercial/Institutional - Office	space with a warehouse - Services							
Fuels & schedules	Channe Franzie	•	Heating	Cooling	Electricity	Simple	Include	
Electricity and fuels Schedules	Show: Energy Fuel saved	•	kWh 🔻	kWh	kWh	payback yr	measure?	
• Equipment	Heating							
	RTU Furnace		0				\checkmark	
Heating	Cooling							
RTU Furnace	RTU A/C			0			\checkmark	
Cooling RTU A/C	Ventilation							
	RTU Ventilation (HVAC)		34,499	1,540		Immediate	\checkmark	
 End-use 	Electrical equipment							
🔺 🚭 Ventilation	RTU Fan Motor				19,710	1.1	\checkmark	
RTU Ventilation (HVAC) Electrical equipment RTU Fan Motor	Total		34,499	1,540	19,710	0.8		

16

What have we modelled?

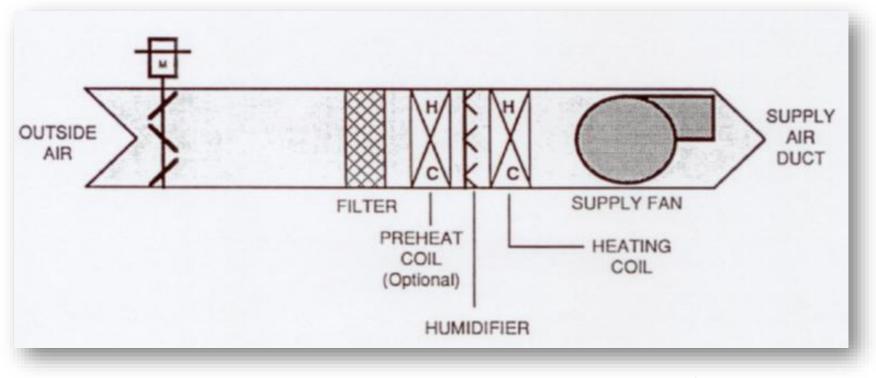
Key elements

- 1. RETScreen always models single zone systems.
- 2. Most RETScreen models consider the system to be able to provide both heating and cooling (i.e. switchover systems).
- 3. Economizer free cooling operation is not considered in RETScreen.

System type

Know your systems before modelling them in RETScreen

HVAC system services


- Always identify what services your HVAC system provides to spaces
- Typically, a system can provide the following, but most systems do NOT provide all these services:
 - 1. Space heating (in contrast to outdoor air heating)
 - 2. Space humidification
 - 3. Space cooling
 - 4. Space air filtration
 - 5. Ventilation (i.e. bringing in outdoor air)

Circumstance/scenario 1

Case study situation • Make-up air (MUA) system

Services provided

- Ventilation only!
- MUA will pre-condition the outdoor air but does not provide space heating, cooling, humidification and filtration
 - The presence of filters, heating and cooling coils and a humidifier does not mean it is used for space air conditioning

 $_{\circ}$ It is a **cold-deck** system

Cold-deck system: A colddeck system refers to a design whereby air is distributed to various zones or areas within a building at a temperature at or below a space temperature set point. Cold deck systems are often contrasted with hotdeck systems whereby air is heated and then distributed.

Case study situation results

Description Note	Makeup Air U	nit		Method 1	Method 2	2 Options –	RETScreet Connect						
Ventilation - Method 2				Base case					Pre	oposed case			
						Flow	Heat recovery efficiency	1				Flow	Heat recovery efficiency
Description	System s	election	Quantity	Schee	lule	cfm 🔻	%	System selection	Quantity	Schedul	e	cfm 🔻	%
		cooling 🔹	1	24/7	•	10,000	0%	Heating & cooling	1	24/7	•	10,000	70%
Total Incremental initial costs - other	s	1	Base case		P	roposed case	Energ	ıy saved					
Incremental initial costs - total	ŝ					0							
Incremental O&M savings	s												
Heating system	. (Furnace	•		Furnace	•						
Heating	kWh 🔻		446,299			133,890	31	2,409					
				~				10%					
Cooling system	l		AC	•		AC	•						
Cooling	kWh		79,150			23,745		6,405 70%					

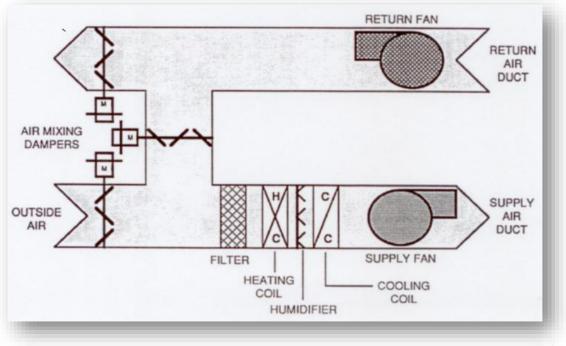
Cautions

Only model the make-up or exhaust (relief) flows – not both

 $_{\odot}$ The exhaust fan is modelled but not its flow

- As it is a cold-deck system, be mindful of the associated schedule
- MUA Schedule should be set higher than space temperature, such as 2 °C higher

Description		24/7	MUA
Occupied			
Temperature - space heating	°C 🔻	22	24
Temperature - space cooling	°C 🔻	22	24
Unoccupied			
Temperature - space heating	°C ▼		18
Temperature - space cooling	°C 🕶		24
Occupancy rate - daily			
Monday	h/d	24	24
Tuesday	h/d	24	24
Wednesday	h/d	24	24
Thursday	h/d	24	24
Friday	h/d	24	24
Saturday	h/d	24	24
Sunday	h/d	24	24
Occupancy rate - annual	h/yr	8,760	8,760
	%	100%	100%
Heating/cooling changeover temperature	°C •	16	
Length of heating season	d	240	
Length of cooling season	d	125	



Circumstance/scenario 2

Case study situation

Constant volume system – single zone

Services provided

- This system can provide all 5 services
- It is typically controlled by a space thermostat
 - $_{\odot}$ It is a **switch-over** being cold-deck when there is a cooling call and hot-deck when there is a heating call
- This system is the basis for the ventilation element in RETScreen

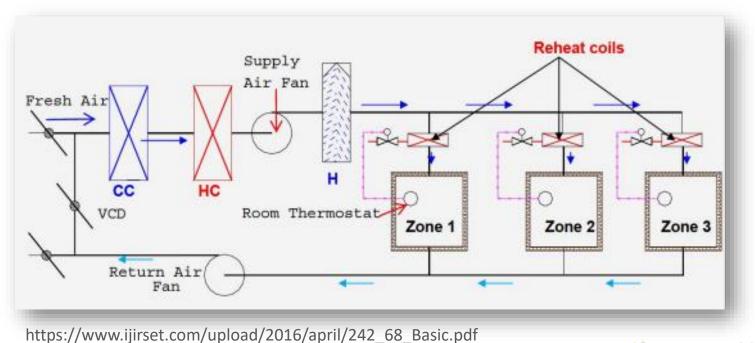
Case study situation results

Commercial/Institutional - Office space with a v	warehouse - Services						
 Fuels & schedules 	CVentilation				Meth	od Options	
 Electricity and fuels Schedules 	Description	RTU Venti	ilatio	n (HVAC)	Meth	od 1 Method 2 eLearning	, RETScreen
> Equipment	Note				Weu	eceaning	Connect
Heating RTU Furnace	Ventilation - Method 1						
🔺 🔆 Cooling	Schedule		(Base case 24/7	•	Proposed case Setback	Energy saved
RTU A/C	Flow	cfm	•	5,000		5,000	-
> End-use	Fresh air	%		20%		20%	
Ventilation	System reheat		Ì	No	•	No	-
RTU Ventilation (HVAC)	System selection		Ì	Heating & cooling	•	Heating & cooling	•
Washroom Exhaust	Fan control		(Constant	•	Schedule	•
Electrical equipment	Ventilation control			Constant	•	Schedule	•
Halogen To LED	Intake air damper leakage			Medium	•	Medium	•
Computers	Heat recovery efficiency	%		0%		0%	
RTU Fan Motor	Costing method					Level 1	-
Optimize supply	Incremental initial costs	\$					\$
	Incremental O&M savings	\$					
Summary	Number of ventilation units		ļ	1		1	
Include measure?	Heating system			RTU Furnace	•	RTU Furnace	•
🌢 Comparison	Heating	kWh	•	42,933		15,333	27,600
			6	0711 4 10			64.3%
	Cooling system			RTU A/C	•	in ory e	•
	Cooling	kWh		7,185		2,566	4,619 64.3%

Cautions

- The system does not respond to a call from space heating and cooling
 - $_{\odot}$ Heating and cooling are only for heating and/or cooling mixed air to the schedule set point
- Free cooling is not considered
- Associated exhaust flows are only defined if they are superior to the % defined in the ventilation element

 $_{\odot}$ Exhaust fan motors are still defined



Circumstance/scenario 3

Case study situation

• Constant volume system with reheat

Services provided

• This system provides 4 of the 5 services

 $_{\odot}$ It is not typically used for space heating

- It is typically controlled by a supply duct temperature sensor $_{\circ}$ It is a cold-deck system
- Reheat coils are typically not used as the primary source of space heating (excluding fan-powered boxes)

Case study situation results

RETScreen screenshot of modelled scenario/circumstance

Fuels & schedules	Ventilation			C Metho	d Options	
Electricity and fuels Schedules	Description	Constant Volu	me Reheat	Meth		, SETScreen
Equipment	Note			weth	bu i Method 2 ecearning	Connect
Heating Boiler	Ventilation - Method 1 —		Base case		Proposed case	Energy save
🛚 🗱 Cooling	Schedule	Ì	24/7	•	24/7	 Energy save
Compressor	Flow	L/s 🔻	4.000	^	4.000	
End-use	Fresh air	%	15%		15%	
📣 Ventilation	System reheat		No	ŦÌ	No	•
Constant Volume Reheat	System selection		Heating & cooling	•	Heating & cooling	•
🚯 Process heat	Fan control		Schedule	•	Schedule	•
Reheat	Ventilation control		Schedule	•	Schedule	-
Optimize supply	Intake air damper leakage		Tight	•	Tight	-
opumize supply	Heat recovery efficiency	% (
Summary	Costing method				Level 1	•
Include measure?	Incremental initial costs	\$				\$
b Comparison	Incremental O&M savings	\$				
	Number of ventilation units		1	[1	
	Heating system		Boiler	•	Boiler	-
	Heating	kWh 🔻	6,354		6,354	0
						0%
	Cooling system	l	Compressor	•	Compressor	-
	Cooling	kWh	7,856		7,856	0
						0%

Cautions

- It is defined in an almost identical manner to the single zone system but:
 - Its schedule must account for its cold-deck nature
- System reheat should NOT be selected
 - $_{\odot}$ Use a separate Process Load to capture reheat
- It is not assigned to specific zones or spaces; the system is independent of the building envelope defined in the model.

System Schedule and Reheat

- The schedule must be defined to a value of typically 5°C or 1 °C above average yearly ambient, whichever is greater.
- Reheat should be defined as a process load using:

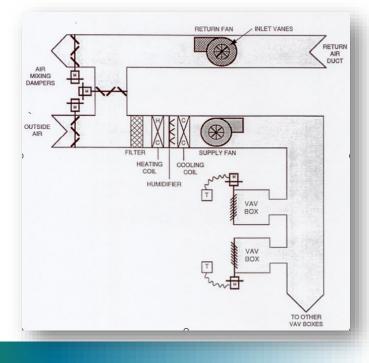
Load = System Flow (CFM) * 1.08 * (Room Temp. - Supply Temp.) (oF) * % with Reheat

• Note: Results are in BTU/hr.

Cold Deck Schedule and Reheat

-Options eLearning , RETScreen , Connect			
-Schedules			
Description		24/7	VAV +
Occupied			
Temperature - space heating	°C 🔻	22	8.2
Temperature - space cooling	*C 🕶	22	24
Unoccupied			
Temperature - space heating	°C 🔻		5
Temperature - space cooling	°C 🔻		24
Occupancy rate - daily			
Monday	h/d	24	24
Tuesday	h/d	24	24
Wednesday	h/d	24	24
Thursday	h/d	24	24
Friday	h/d	24	24
Saturday	h/d	24	24
Sunday	h/d	24	24
Occupancy rate - annual	h/yr	8,760	8,760
	%	100%	100%
Heating/cooling changeover temperature	°C 🕶	16	
Length of heating season	d	240	
Length of cooling season	d	125	_
			-

Description Note	F	leheat	RETSCR		
- Process heat			Base case	Proposed case	Energy save
Level			Level	2	-
Heating load	kW	•	0.23	0.23	
Duty cycle	%		100%	100%	
Operating hours	h/yr	•	1,500	1,500	
Incremental initial costs	\$				
Incremental O&M savings	\$				
Heating system			Boiler 🔹	Boiler	•
			1	1	
Number of units				the second se	
Number of units Heating	kWh	•	345	345	0



Circumstance/scenario 4

Case study situation

• Variable air volume (VAV) systems

Services provided

• This system provides 4 of the 5 services

 $_{\odot}$ It is not typically used for space heating

- It is typically controlled by a supply duct temperature sensor $_{\circ}$ It is a cold-deck system
- Reheat coils can be used but are not the primary source of space heating (excluding fan-powered boxes)

Case study situation results

RETScreen screenshot of modelled scenario/circumstance

Fuels & schedules	Ventilation	Ventilation Options							
Electricity and fuels Schedules	Description	Ventila	tion	Meth	od 1 Method 2 eLearning	, Streen ,			
Equipment	Note			wein	od i Method 2 elearning	Connect			
👌 Heating Boiler	Ventilation - Method 1		Base case		Proposed case	Energy saved			
🗱 Cooling	Schedule		VAV	•		 Energy saved 			
Compressor	Flow	L/s 🔻	4.000		4.000	-			
End-use	Fresh air	%	15%		15%	_			
💫 Ventilation	System reheat		No		No	-			
Ventilation	System selection		Heating & cooling	-	Heating & cooling	-			
Process heat	Fan control		Schedule	•	Schedule	-			
Process heat	Ventilation control		Schedule	•	Schedule	-			
Optimize supply	Intake air damper leakage		Tight	•	Tight	•			
Optimize supply	Heat recovery efficiency	%							
Summary	Costing method				Level 1	•			
👔 Include measure?	Incremental initial costs	S				\$			
July Comparison	Incremental O&M savings	s							
	Number of ventilation units		1		1				
	Heating system		Boiler	•]	Boiler	•			
	Heating	kWh 🔻	6,354		6,354	0			
						0%			
	Cooling system		Compressor	•	compressor	~			
	Cooling	kWh	5,298		5,298	0			

Cautions

- The flow modulation is not modelled and the flow entered must be the typical average yearly flow
- Its schedule must account for its cold-deck nature, as shown for the constant volume system identical approach.
- Do NOT select reheat but use the previous Process Load method:

 $_{\odot}$ Only difference is using the average flow.

 It is not assigned to specific zones or spaces; the system is independent of the building envelope defined in the model

Circumstance/scenario 5

Case study situation

• Washroom, kitchen, process or general exhaust

Case study situation results

Description Note	Ventilation			Method 1 Metho		RETScreen Connect	•					
r Ventilation - Method 2							Proposed case					
					Flow	Heat recovery efficiency				Flow	Heat recovery efficiency	
Description	System s	election	Quantity	Schedule	cfm 🔻	-	System selection	Quantity	Schedule	cfm 🔻	%	
	Heating &		1	24/7	▼ 10,000	0%	Heating & cooling	1	6 hours per da	10,000	0%	
•	Heating &	cooling •	1	24/7	• 0	0%	Heating & cooling 🔹	1	12 hours per d 💌	2,500	0%	
•	Heating &	cooling 🔹 🔻	1	24/7	• 0	0%	Heating & cooling 🔹	1	6 hours per da	0	0%	
+ Total			Base case		Proposed case	Energy	saved					
Incremental initial costs - other	\$				8,000	\$						
Incremental initial costs - total	\$				8,000							
Incremental O&M savings	\$											
Heating system			Furnace	•	Furnace	•						
Heating	kWh 🔻		446,299		167,362	278,9						
						62.5	%					
Cooling system	l		AC	•	AC	•						
Cooling	kWh		79,150		29,681	49,46						
						62.5	%					

44

Cautions

- Only model the exhaust or make-up flows not both
- Be attentive to the schedule (temperature) defined as the associated flow from exhaust, even when no MUA is present, system is considered cold-deck.

Q and A period

Workshop 2 – hands on with RETScreen Expert HVAC

Efficient Electrification Toolkit and Helpdesk

The webinar materials will be shared with you by email.

The webinar recording can be accessed at <u>SaveonEnergy.ca/Training-and-</u> <u>Support</u>. Select your sector and then "Efficient Electrification".

For questions and technical support regarding the Efficient Electrification Toolkit, including RETScreen, contact <u>trainingandsupport@ieso.ca</u>.

Please use "EE toolkit helpdesk" as your email subject line. Requests will be triaged and addressed in the order they are received.

Post-webinar support

One-on-one coaching – tailored support for managing energy resources effectively

Post-webinar support intake form

Coaching sessions conducted virtually by phone, video calls, and email Designed for organizations, new or old, seeking guidance

Thank you

SaveOnEnergy.ca

trainingandsupport@ieso.ca

@SaveOnEnergyOnt

facebook.com/SaveOnEnergyOntario

Sign up for Save on Energy's quarterly business newsletters for the latest program, resource and event updates

